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Introduction

In this thesis, our aim is to present a recent result proved by Yves André in [And18], building on
some results from [Bha14]: Hochster’s direct summand conjecture in commutative algebra; we
will focus on the approach given by Bhargav Bhatt in his article [Bha18], in which he streamlines
André’s original proof.

Hochster’s original conjecture - now André’s theorem - is the following:

Theorem 1 (André). Let A0 be a regular ring, and let A0 ↪→ B0 be a module-finite extension
of A0. This inclusion splits as a map of A0-modules.

Many partial solutions to Hochster’s conjecture have been known for quite a long time. For
example, Hochster himself proved that we can assume A0 to be local and we may replace it by
a faithfully flat extension in [Hoc73]. In that same article, Hochster solved the conjecture in the
case of equal characteristic, i.e. when A0 contains a copy of a field. The first chapter will focus
on these simplifications, and will contain a brief proof of the two equal characteristic cases. In
their articles, André and Bhatt proved the remaining case of characteristic (0, p), which will be
the focus of the rest of the this thesis.

The first approach to simplify the problem is as follows. The short exact sequence of A0-
modules 0 → A0 → B0 → Q0 → 0 corresponds to an element α0 ∈ Ext1

A0
(A0, Q0), and the

sequence splits if and only if α0 = 0. If we consider a faithfully flat extension A0 → A and
apply the tensor product we obtain a new short exact sequence 0 → A → B → Q → 0, with
corresponding element α ∈ Ext1

A(A,Q). The induced map Ext1
A0

(A0, Q0) → Ext1
A(A,Q) sends

α0 to α, and by faithful flatness α = 0 if and only if α0 = 0, so it is sufficient to prove that the
tensored sequence splits. In particular, this happens if A ↪→ B is étale, and since we know that
there is some element g ∈ A0 (the discriminant) such that A0[g−1] ↪→ B0[g−1] is étale, we would
hope to find a suitable faithfully flat extension A such that from the étaleness of A[g−1] ↪→ B[g−1]
we may deduce the étaleness of A ↪→ B. It turns out that this requirement would be too strong,
but there is a similar result given by Faltings’ almost purity theorem, in the context of almost
mathematics.

Almost mathematics allows - after the extension of A0 to a suitably large ring A - to consider
the more flexible category of almost-A-modules. This theory, first developed by Gerd Faltings in
[Fal88], will be explored in Chapter 2, with the transposition of many definitions and properties
in this new language (starting with almost zero modules and concluding with almost finite étale
extensions) - the reference book for this argument is a comprehensive work by Gabber and
Ramero: [GR03]. This is the preliminary work needed to state Faltings’ almost-purity theorem,
which for a suitable A states that if the map A→ B is étale after inverting p, it is almost étale.

To apply this theorem, we will need to find some further extensions Am where g divides
pm, so that inverting p inverts g, too. To solve this problem, and to give a nice formulation of
Faltings’ almost-purity theorem, we will introduce in Chapter 3 the concepts of perfectoid fields
and algebras, first developed by Scholze in [Sch12]. Unfortunately, the extensions Am won’t
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be faithfully flat over A: we will need a perfectoid version of Riemann’s theorem on removable
singularities - Scholze’s Hebbarkeitssatz, which is proved in Chapter 4 - to retrieve étaleness back
from these rings.

Finally, Chapter 5 will be devoted to the proof of the direct summand theorem, by presenting
together all the previous constructions.
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Chapter 1

Hochster’s original work

In this chapter we will follow Hochster’s first steps towards the solution of his conjecture, which
naturally lead to the solution of the case of equal characteristic.

1.1 Strengthening of the hypothesis

First of all, let’s state the direct summand theorem, as it was originally conjectured by Hochster.

Theorem 1.1.1 (André). Let A be a regular ring, and let A ↪→ B be a module-finite extension
of A. This inclusion splits as a map of A-modules.

The first and foremost result from Hochster is the following, which establishes that his con-
jecture is a local problem.

Proposition 1.1.2. Let A ↪→ B be a module-finite extension of noetherian rings. Then:

1. the inclusion A ↪→ B splits (as a map of A-modules) if and only if Ap ↪→ Bp splits (as a
map of Ap-modules) for every p ⊆ A prime ideal;

2. similarly, if A ↪→ A′ is a faithfully flat extension, A ↪→ B splits if and only if A′ ↪→ B⊗AA′
splits.

Before proceeding, let’s remind what we mean by faithfully flat extension with the following
definition and lemma.

Definition 1.1.3. LetR be a commutative ring,M anR-module. The moduleM is faithfully flat
if for every sequence N1 → N2 → N3, it is exact at N2 if and only ifM⊗N1 →M⊗N2 →M⊗N3

is exact at M ⊗N2. An extension R→ R′ is faithfully flat if R′ is faithfully flat as an R-module.

Lemma 1.1.4. Let R be a commutative ring, M a flat R-module. The following are equivalent:

1. the module M is faithfully flat;

2. for every pair of R-modules P and Q the natural map HomR(P,Q)→ HomR(M⊗P,M⊗Q)
is injective;

3. for every R-module N , M ⊗N = 0 if and only if N = 0.
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Proof. First, let’s prove (2) ⇔ (3). Assume (2) is true, and take an R-module N such that
N ⊗M = 0. We have an injective map:

N ∼= HomR(R,N) ↪→ HomR(R⊗M,N ⊗M) ∼= HomR(M, 0) ∼= 0,

therefore N = 0.
Assume (3) is true. To prove (2), we need to show that for any two R-modules P , Q and any

map f : P → Q, if the induced map f ⊗ idM : P ⊗M → Q ⊗M is zero, then f = 0. We can
write f = g ◦ h, with h : P → im(f) surjective and g : im(f) → Q injective. Since M is flat,
g⊗ idM is injective and h⊗ idM is surjective, so f ⊗ idM = 0 if and only if im(f)⊗M = 0, which
by hypothesis implies im(f) = 0, i.e. f = 0.

Now let’s prove (1)⇔ (3). Assume (3) is true and take N1 N2 N3,
f g a sequence

of R-modules such that M ⊗N1 →M ⊗N2 →M ⊗N3 is exact. Since M is flat, we have that:

ker(g)

im(f)
⊗M ∼=

ker(g)⊗M
im(f)⊗M

∼=
ker(g ⊗M)

im(f ⊗M)
∼= 0,

therefore ker(g)
im(f) = 0 and N1 → N2 → N3 is exact.

Vice versa, assume (1) is true and consider the sequence 0 → N → 0. If M ⊗ N = 0, the
tensored sequence is 0 → 0 → 0, which is exact: this implies that 0 → N → 0 is exact, so
N = 0.

We need the following lemma.

Lemma 1.1.5. Let R be a commutative ring and M a finitely presented R-module. If R′ is a
flat ring over R, then for every R-module N the following natural map is an isomorphism:

αM,N : HomR(M,N)⊗R R′ → HomR(M,N ⊗R R′).

Proof. If M ∼= Rn for some finite n, both arguments are naturally isomorphic to (N ⊗RR′)n and
the isomorphisms carry αM,N to the identity map.

In general, sinceM is finitely presented, there is an exact sequence Rk → Rn →M → 0. The
functors HomR(·, N)⊗R R′ and HomR(·, N ⊗R R′) are both left exact, thus we get the following
diagram:

0 HomR(M,N)⊗R R′ HomR(Rn, N)⊗R R′ HomR(Rk, N)⊗R R′

0 HomR(M,N ⊗R R′) HomR(Rn, N ⊗R R′) HomR(Rk, N ⊗R R′).

αM,N αRn,N α
Rk,N

The diagram commutes because α is a natural transformation, and since αRn,N and αRk,N are
both isomorphism, αM,N is also an isomorphism by the five lemma.

Corollary 1.1.6. Using the properties of the tensor product, we can also deduce a natural
isomorphism:

HomR(M,N)⊗R R′ ∼= HomR′(M ⊗R R′, N ⊗R R′).
Now onto the proof of Proposition 1.1.2.

Proof. First of all, let’s call C := B/A and observe that A ↪→ B splits if and only if B � C
splits, i.e. if the natural map HomA(C,B) → HomA(C,C) is surjective. This happens if and
only if the localization of this map in p is surjective for every prime ideal p ⊂ A.
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B is module-finite over A, so C is a finitely generated A-module, and since A is noetherian C
is also finitely presented: by the previous lemma, the functor HomA(C, ·)⊗AAp and the functor
HomAp

(C ⊗A Ap, · ⊗A Ap) are naturally isomorphic. In particular, we have the commutative
diagram:

HomA(C,B)⊗A Ap HomA(C,C)⊗A Ap

HomAp
(Cp, Bp) HomAp

(Cp, Cp).

∼= ∼=

The arrow above is surjective if and only if the arrow below is surjective, which happens if and
only if the inclusion Ap ↪→ Bp splits.

For the second point, let’s first observe that HomA(C,B)→ HomA(C,C) is surjective if and
only if HomA(C,B)⊗A A′ → HomA(C,C)⊗A A′ is surjective, because A ↪→ A′ is faithfully flat.
With the same reasoning as before we get to the commutative diagram:

HomA(C,B)⊗A A′ HomA(C,C)⊗A A′

HomA′(C ⊗A A′, B ⊗A A′) HomA′(C ⊗A A′, C ⊗A A′).

∼= ∼=

and since the arrow below is surjective if and only if A′ ↪→ B ⊗A A′ splits, the proposition is
proven.

As a further simplification, let’s prove that we can assume the extension B to be a domain
with the following proposition.

Proposition 1.1.7. Let A be a domain and i : A→ B be a module-finite ring extension. There
is a prime q ⊂ B (with projection πq : B → B/q) such that:

1. the composite map πq ◦ i : A→ B/q is injective;

2. if A→ B/q splits, then A→ B splits.

Vice versa, if i : A→ B splits we can choose q ⊂ B prime such that πq ◦ i : A→ B/q is injective
and splits.

Proof. Since A is a domain, S := i(A\{0}) is a multiplicatively closed set in B. Take a maximal
ideal in S−1B: it corresponds to a prime ideal q ⊂ B with empty intersection with S. In
particular, the composite map πq ◦ i : A→ B/q is injective.

Moreover, if rq : B/q→ A is a retraction for πq ◦ i, we have rq ◦ πq ◦ i = idA, thus rq ◦ πq is
a retraction for i : A→ B.

Vice versa, if r : B → A is a retraction for i, set q := ker(r) (which is prime because A is a
domain): r factorizes as rq ◦ πq, where rq : B/q → A is the map induced on the quotient, and
since idA = r ◦ i = rq ◦ πq ◦ i, the map πq ◦ i : A→ B/q is injective with retraction rq.

By Proposition 1.1.2.i we can always assume A to be local. We now state concisely (without
proof), in the case of mixed characteristic (0, p), all the other assumptions that we can make
about A and B without loss of generality.

Proposition 1.1.8. The following statements are equivalent.

• For all regular local rings (A,m) of mixed characteristic (0, p), every module-finite extension
A ↪→ B splits as a map of A-modules.
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• For all regular local rings (A,m) of mixed characteristic (0, p), which are complete, un-
ramified (i.e. p ∈ m \ m2), and with A/m algebraically closed, every module-finite integral
extension A ↪→ B splits as a map of A-modules

Remark 1.1.9. We just proved in Proposition 1.1.7 that we can assume the extension B to be a
domain.

We can assume A to be complete and with algebraically closed residue field by replacing it
with a suitable faithfully flat extension, as permitted by Proposition 1.1.2.ii.

The reason why we can assume A to be unramified is more complex, but an exhaustive
proof can be found in [Hoc83, Theorem 6.1]. Bhatt has circumvented this problem in [Bha18,
Proposition 5.2], but to provide a simpler construction in the last chapter, we will assume non-
ramification.

1.2 Finite characteristic

In this section, we will prove the direct summand theorem in the case of positive equal charac-
teristic p. The main idea for the proof of this particular case is borrowed from an observation of
Hochster, which can be found in [Hoc83, Remark 6.2].

Theorem 1.2.1. Let A be a regular ring of characteristic p, and let A ↪→ B be a module-finite
extension of A. This inclusion splits as a map of A-modules.

By Proposition 1.1.2 we can assume A to be local, and by what we said in Remark 1.1.9
we can also assume A to be complete with an algebraically closed residue field, and B to be a
domain

Let’s state a fundamental structure theorem about regular rings of finite characteristic:

Theorem 1.2.2 (Cohen). Let A be a complete regular local ring of finite characteristic p and
dimension d, and let k be its residue field. Then A is isomorphic to a ring of power series on k:

A ∼= k[[x1, · · · , xd]].

Before the proof of Theorem 1.2.1, let’s consider an easy lemma.

Lemma 1.2.3. There is a non zero map of A modules φ : B → A.

Proof. Let’s first prove that B can be embedded in a free A-module.
Let K and L be respectively the fraction fields of A and B: we have that B is contained in

L, which is a finite dimensional K-vector space with basis {ej}j . If we consider a finite set of
generators {bi}i of B as an A-module, we can write bi =

∑
j
si,j
ti,j

ej with si,j ∈ A, ti,j ∈ A \ {0}.
Let t :=

∏
i,j ti,j 6= 0: B is contained in F := 1

t SpanA({ei}), which is a free module of finite
rank.

Since B ⊆ F , at least one of the projections of B onto the coordinates of F must be not
identically zero: this is a non zero map of A-modules from B to A.

Now we can prove Theorem 1.2.1.

Proof. Consider a non zero map of A modules φ : B → A, as constructed in the previous lemma.
Without loss of generality, we can assume φ(1) 6= 0: if b ∈ B is such that φ(b) 6= 0, we could
simply consider the A-linear map which sends x ∈ B to φ(bx). Since A is complete with respect
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to its maximal ideal m := (x1, · · · , xn), we have that
⋂
k>0 m

k = 0; in particular, there is some
e > 0 such that φ(1) 6∈ mp

e

.
If we call Φ the Frobenius endomorphism, we have that Φe(A) = k[[xp

e

1 , · · · , x
pe

d ]], and the
maximal ideal in Φe(A) is exactly Φe(m). If we work modulo this ideal, since we have that
Φe(m)A = (xp

e

1 , · · · , x
pe

d ) ⊆ mp
e

, the projection of φ(1) on A/Φe(m)A is not zero: this means
that it can be completed to a basis of A/Φe(m)A as a Φ(A)/Φ(m)-module, and by Nakayama’s
lemma φ(1) is part of a minimal set of generators of A as a Φe(A)-module. On the other hand,
A is a free Φe(A)-module of rank ped, since we can take as a basis the set of monomials in the
variables x1, · · · , xn and exponent less than pe. Thus, φ(1) is part of a free basis of A as a Φe(A)-
module, and we can consider the Φe(A)-linear projection p from A to the component generated
by φ(1) (this component can be identified with Φe(A) by sending the element φ(1) to 1 ∈ A).
If we call i the inclusion map Φe(B) ↪→ B, the composite map ψ := p ◦ φ ◦ i : Φe(B) → Φe(A)
is a Φe(A)-linear map such that ψ(1) = 1, therefore it is a retraction of the inclusion map
Φe(A) ↪→ Φe(B). Since Φe is injective, we get the following commutative diagram:

A B

Φe(A) Φe(B),

∼= ∼=

so the inclusion A ↪→ B also admits a retraction.

1.3 Characteristic 0
In this section, we will prove the direct summand theorem in the case of equal characteristic 0.
In this case we won’t need regularity, and we can state the theorem as follows.

Theorem 1.3.1. Let A be a domain of equal characteristic 0, and let A ↪→ B be a module-finite
extension of A. This inclusion splits as a map of A-modules.

We just need two easy lemmas.

Lemma 1.3.2. A ring A has characteristic 0 if and only if it contains a copy of Q.

Proof. Let i : Q ↪→ A. Since every element of Q \ {0} has an inverse, i(Q) ∩ p = {0} for every
prime ideal p ⊂ A, therefore the composite map πp ◦ i : Q → A/p is injective, and A/p has
characteristic 0.

On the other hand, if A has characteristic 0, there is an immersion i : Z ↪→ A, and since for
every prime ideal p A/p has characteristic 0, it follows that p ∩ i(Z) = {0}. This means that
every element in i(Z) \ {0} is invertible, therefore the inclusion i can be extended to Q.

Lemma 1.3.3. Let A ↪→ B be a module-finite extension of domains. If A is a field, then B is
a field.

Proof. Fix any b ∈ B\A. Since b is not a zero-divisor, it admits an irreducible minimal polynomial
with coefficients in A: µ(x) = xn + an−1x

n−1 + · · · + a0, for some n > 1. Since µ is irreducible
a0 6= 0; if we call f(x) := µ(x)−a0

x , we get that bf(b) = a0, and since a0 is invertible, so is b.

Corollary 1.3.4. Let A ↪→ B is a module-finite extension of domains, with S := A \ {0}. Then
S−1B is the fraction field L of B.
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Proof. S−1A ↪→ S−1B is a module-finite extension and S−1A is a field, so by the previous lemma
S−1B is also a field; since L is the minimal field that admits an injection B ↪→ L, we get an
injection L ↪→ S−1B. On the other hand, obviously S−1B is contained in L, therefore they are
equal.

We are ready to prove Theorem 1.3.1.

Proof. As shown in Proposition 1.1.7, it suffices to show that any module-finite extension A ↪→ B
with B domain splits. Let S := A \ {0}; since A ↪→ B is a module-finite extension, S−1B is the
fraction field of B, and S−1A ↪→ S−1B is a finite extension of fields. Let tr : S−1B → S−1A
be the trace map: for all a ∈ A tr(a) = na, where n := [S−1B : S−1A], and since A ↪→ B is an
integral extension, tr(B) ⊆ A. Finally, n is invertible is A, thus 1

n tr : B → A is a retraction of
A ↪→ B.

Remark 1.3.5. This line of reasoning fails if A has mixed characteristic because n in general will
not be invertible; on the other hand, we can still deduce that the localized map A

[
1
n

]
↪→ B

[
1
n

]
splits. On its own, this result does not help because this localization is not faithful, but it can
redirect us towards the solution: one may look for some theorems that from the splitting of the
localization deduce the splitting of the original map. Such a result would be too strong to hope
for, but there is a weaker version in a particular environment: Faltings’ almost purity theorem. It
will concern étale morphism (which is a slightly stronger condition than the splitting property),
and its setting of almost mathematics will be explored in the next chapter.
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Chapter 2

Almost mathematics

In this chapter we will give an introduction to almost mathematics, a theory first elaborated by
Gerd Faltings to facilitate the study of some particular non-noetherian rings. All the concepts
and proofs that are contained here can be found, explored in much greater detail and generality,
in a comprehensive work from Gabber and Ramero: [GR03].

In the rest of the chapter, V will be a ring with a set element t ∈ V which is not a zero divisor
and admits a system of p-power roots for some prime number p; the ideal generated by all these
roots will be called I := (t

1
p∞ ).

Example 2.0.1. Consider the ring Zp of p-adic integers (that is the completion of Z with respect
to the ideal p), with quotient field Qp. Recursively, take x0 := p and choose {xn}n in the
algebraic closure of Qp such that xpn+1 = xn. If we add all the xi to Zp we get the ring Zp[p

1
p∞ ],

with a system of p-power roots of p. This ring will be the building block for the construction of
perfectoid theory, in Chapter 3.

2.1 The category of almost-modules

Starting from the category V −Mod of V -modules we want to work with some sort of "quotient"
category, where we collapse to zero every "little" module, by which we mean every module which
is annihilated after multiplication by any element in I. We will call it the category of almost-V -
modules: V a −Mod. To describe this category, we first need to prove the following lemma:

Lemma 2.1.1. Let V , I be as already defined. Then:

• as a V -module, I is flat;

• there is an equality I2 = I;

• The multiplication map m : I ⊗ I → I is an isomorphism.

Proof. • The ideal I is the increasing union of the ideals Ik := (t
1

pk ). Since Ik is principal
for all k, and t is not a zero divisor, they are all isomorphic to V as V -modules, hence flat.
Since filtered colimits of flat modules are flat, this implies that I is flat.

• Obviously I2 ⊆ I. Viceversa, t
1

pk is a multiple of t
2

pk+1 ∈ I2, therefore I ⊆ I2.

13



• Consider the inclusion I ↪→ V : tensoring by I we get the multiplication map m : I⊗I → I.
It is injective because I is flat, but it is surjective by the previous point, therefore it is an
isomorphism.

Now we can explicitly describe the category Mod− V a in the following way:

• for every object M ∈ V −Mod there is an object Ma ∈ V a −Mod;

• the morphisms HomV a(Ma, Na) are identified with HomV (I ⊗M,N);

• the identity in HomV a(Ma,Ma) ∼= HomV (I ⊗M,M) is the natural map induced by the
inclusion I ⊆ V ;

• given f ∈ HomV a(Ma, Na) and g ∈ HomV a(Na, P a) the composition g ◦a f is defined as:

g ◦ (idM ⊗ f) ◦ (m−1 ⊗ idM ) : I ⊗M → I ⊗ I ⊗M → I ⊗N → P.

Remark 2.1.2. The almost mathematics depends on the choice of the element t, but when this
choice is clear from the context we will omit the dependence for clarity of exposition.

Remark 2.1.3. It is worth noting that we can take t = 1: in this case, the almost category is
the same as the original category. This means that "usual" mathematics is properly a particular
case of almost mathematics.

There is a natural functor (−)a : V −Mod → V a −Mod, which sends M to Ma and
f : M → N to the induced morphism fa : I ⊗M → N . The category V a −Mod is abelian and
inherits via this natural functor a notion of tensor product from the original category.

If we start with a V -algebra R with no t-torsion, we can similarly define Ra −Mod; the
morphisms will be:

HomRa(Ma, Na) := HomR(IR⊗RM,N).

Remark 2.1.4. This is the same as HomR(I ⊗V M,N) ∼= HomR((I ⊗V R)⊗RM,N). The reason
is that for all k, since R has no t-torsion, we have the isomorphisms IkR ∼= R ∼= V ⊗V R ∼= Ik⊗R,
where Ik = (t

1

pk ) ⊆ V ; therefore, by passing to the colimit, we get IR ∼= I ⊗V R.
In particular, the different definitions of almost mathematics are compatible.

Remark 2.1.5. Since V a −Mod has inherited a notion of tensor product, it is possible to define
a V a-algebra A as an algebra in the category V a−Mod; similarly we can also define a "module"
over A: their category will be simply written as A −Mod. It can be verified that, if A = Ra,
the categories A−Mod and Ra −Mod are equivalent, so there is no ambiguity of definitions.

The main definition in the context of almost mathematics is that of (t-)almost zero module.
Let’s explore it with a lemma.

Lemma 2.1.6. Take M ∈ R−Mod. The following are equivalent:

• the R-module IM = 0;

• the R-module I ⊗V M = 0;

• the object Ma ∈ Ra −Mod is the zero object.

In this case, M is said to be t-almost zero, and we will write M ≈t 0.
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Proof. Let’s prove (2)⇔ (3):

Ma ∈ Ra −Mod is the zero object ⇔ ∀N ∈ R−Mod, HomRa(Ma, Na) = 0

⇔ ∀N ∈ R−Mod, HomR(IR⊗RM,N) = 0

⇔ IR⊗RM = 0

⇔ I ⊗V M = 0.

Since IM is the image of the natural map I ⊗V M → M , (2) ⇒ (1) is obvious. Vice versa,
consider a generic element in I ⊗V M : we just have to prove that it is zero. Since I ⊆ V is an
ideal, we can always write such an element as 1 ⊗ x, with x ∈ M . The map I ⊗V M → IM is
identically zero, so we get x = m(1⊗ x) = 0, which means that 1⊗ x = 0.

Having clarified this basic notion, we can study the relationship between the categories R −
Mod and Ra −Mod.

Proposition 2.1.7. Let R be a V -algebra.

• The functor (−)a : R−Mod→ Ra−Mod has a right adjoint (−)∗ : Ra−Mod→ R−Mod.
For M ∈ Ra −Mod, with underlying R-module M0, M∗ is defined as follows:

M∗ := HomRa−Mod(Ra,M) ∼= HomR−Mod(IR,M0),

while on the maps it is defined in the obvious way.

• The counit εM : (M∗)
a →M (i.e. the map that corresponds to the identity idM∗ : M∗ →M∗

via the adjunction) is an isomorphism.

• The functor (−)a : R−Mod→ Ra−Mod has a left adjoint (−)! : Ra−Mod→ R−Mod.
It is defined as the composition of the functor (−)∗ and the functor −⊗V I.

Proof. In this proof, tensor products will all be considered with respect to R.

Let M ∈ Ra −Mod, N ∈ R−Mod, with M0 as above:

HomR−Mod(N,M∗) = HomR−Mod(N,HomR−Mod(IR,M0))
∼= HomR−Mod(IR⊗N,M0)
∼= HomRa−Mod(Na, (M0)a) = HomRa−Mod(Na,M),

so the functors are adjoint.

•• If we take N := M∗, this adjunction sends the identity map idM∗ to:

εM ∈ HomRa−Mod((M∗)
a,M) ∼= HomR−Mod(IR⊗HomR−Mod(IR,M0),M0),

with εM (a⊗ f) = f(a). Let’s consider:

φM ∈ HomRa−Mod(M, (M∗)
a) ∼= HomR−Mod(IR⊗M0,HomR−Mod(IR,M0)),

such that φM (a⊗x) = (b→ bax). Let’s prove that it’s the inverse of εM . In one direction:
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IR⊗ IR⊗HomR−Mod(IR,M0) IR⊗M0 HomR−Mod(IR,M0)

a⊗ b⊗ f a⊗ f(b) (c 7→ caf(b) = abf(c)),

idIR⊗εM φM

therefore φM ◦a εM , viewed as an element of HomR−Mod(IR⊗M∗,M∗), sends a⊗f to af ,
which is the identity map in Ra −Mod.

Vice versa:

IR⊗ IR⊗M0 IR⊗HomR−Mod(IR,M0) M0

a⊗ b⊗ x a⊗ (c 7→ cbx) abx,

idIR⊗φM εM

therefore εM ◦a φM , viewed as an element of HomR−Mod(IR⊗M0,M0), sends a⊗x to ax,
which is the identity map in Ra −Mod.

• Let M ∈ Ra −Mod, N ∈ R−Mod, with M0 as above:

HomR−Mod(M!, N) = HomR−Mod(IR⊗M∗, N)
∼= HomRa−Mod((M∗)

a, Na)
∼= HomRa−Mod(M,Na),

where in the last isomorphism we used that M and Ma
∗ are isomorphic in Ra −Mod via

εM .

2.2 First definitions

In this new context we can give many definitions analogous to classical ones, and many properties
are preserved - with appropriate alterations - in the new setting. The following examples are the
ones we will need in this thesis. Let M,N be R-modules:

• the R-module M is almost zero (M ≈ 0) if Ma ∈ Ra −Mod is the zero object, which
happens if and only if M is I-torsion;

• the R-linear map f : M → N is almost injective (resp. almost surjective) if ker(f) ≈ 0
(resp. if coker(f) ≈ 0);

• the R-linear map f : M → N is an almost isomorphism if it is almost injective and almost
surjective;

• the R-module M is almost projective (resp. almost flat) if for all N ∈ R −Mod, the
R-module Ext1

R(M,N) ≈ 0 (resp. if TorR1 (M,N) ≈ 0);

• the R-module M is almost faithfully flat if it is almost flat and for all N1, N2 ∈ R−Mod
the induced map HomR(N1, N2)→ HomR(N1 ⊗M,N2 ⊗M) is almost injective;
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• the sequence of R-modules N1 N2 N3
f g is said to be almost exact at N2 if

ker(g)/ im(f) ≈ 0.

Remark 2.2.1. It can be checked that the definition of almost isomorphism is compatible with
the intrinsic notion of isomorphism in Ra −Mod.
All the definitions we gave are invariant under almost isomorphism. We will just give an example,
and check the following property.

Proposition 2.2.2. Let M,N,P be R-modules, and f : M → N an almost isomorphism. The
natural map ExtkR(P,M)→ ExtkR(P,N) is an almost isomorphism for all k ≥ 0.

First, let’s prove another lemma which highlights the good behaviour of almost zero modules.

Lemma 2.2.3. Let F : R −Mod → R −Mod be an R-linear functor, K an almost zero
R-module. The R-module F (K) is almost zero.

Proof. Since F is R-linear, it preserves the endomorphism − · tα for all α > 0. On the module
K this endomorphism is zero, therefore the same happens for F (K); every element of F (K) is
tα-torsion for all α > 0, therefore F (K) ≈ 0.

Now we can prove the proposition.

Proof. We can write f as the composition M im(f) N,
p i where p is surjective and

almost injective, while i is injective and almost surjective.

• Consider the exact sequence 0 → K → M → im(f) → 0, where K ≈ 0. Applying the
functor HomR(P,−) we get the following piece of a long exact sequence for all k ≥ 0:

ExtkR(P,K)→ ExtkR(P,M)→ ExtkR(P, im(f))→ Extk+1
R (P,K).

By the previous lemma, since K ≈ 0 and ExtkR(P,−) is an R-linear functor for all k, the
first and last term of the exact sequence are almost zero, therefore the central map is an
almost isomorphism

• Consider the exact sequence 0 → im(f) → N → C → 0, where C ≈ 0. Applying the
functor HomR(P,−) we get the following piece of a long exact sequence for all k ≥ 0:

Extk−1
R (P,C)→ ExtkR(P, im(f))→ ExtkR(P,N)→ ExtkR(P,C),

where if k = 0 the functor Extk−1
R (P,−) is identically zero. By the previous lemma, since

C ≈ 0 and ExtkR(P,−) is an R-linear functor for all k, the first and last term of the exact
sequence are almost zero, therefore the central map is an almost isomorphism.

Finally, we get that the composite map ExtkR(P,M) → ExtkR(P, im(f)) → ExtkR(P,N) is an
almost isomorphism for all k ≥ 0.

Remark 2.2.4. It’s not obvious a priori that the definitions we gave are the most appropriate
generalizations.

For example, we could define an almost projective module M as a module such that Ma is
a projective object in the category Ra −Mod. The problem of this definition would be that
Ra −Mod does not have enough projectives (in particular, one could prove that Ra is not a
projective object in Ra −Mod).

Some reasons to think of those definitions as the "right" ones will be given in the next section.
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2.3 Projectiveness, flatness and faithful flatness
The most convincing argument for the use of the previous definitions is to show that many
"classical" properties are translated nicely into the language of the almost mathematics, for
example the following:

Proposition 2.3.1. Let M be an R-module.

• The following are equivalent:

1. the R-module M is almost projective;
2. for every surjective map g : N2 → N3, for every map φ : M → N3, for every α > 0,

the map tαφ factors through g;
3. for every exact sequence of R-modules 0 → N1 → N2 → N3 → 0, the sequence

0→ HomR(M,N1)→ HomR(M,N2)→ HomR(M,N3)→ 0 is almost exact.

• For every sequence of R-modules 0 N1 N2 N3
f g which is almost exact,

the induced sequence 0 HomR(M,N1) HomR(M,N2) HomR(M,N3)
f̃ g̃

is almost exact. Moreover, if M is almost projective and g is almost surjective, g̃ is almost
surjective.

Proof. (1) implies (3) because we have an exact sequence:

0 HomR(M,N1) HomR(M,N2) HomR(M,N3) Ext1
R(M,N1),

where Ext1
R(M,N1) ≈ 0.

(3) implies (2) because since the map HomR(M,N2) → HomR(M,N3) is almost surjective,
tαφ is in its image for every φ ∈ HomR(M,N3) and for every α > 0.

Now assume (2) is true. For any R-module N there is an injective module Q and an injective
map f : N ↪→ Q. Take the short exact sequence induced by f :

0 N Q C 0.
f g

Since Q is injective, Ext1
R(M,Q) = 0 and we have the following exact sequence:

0 HomR(M,N) HomR(M,Q) HomR(M,C) Ext1
R(M,N) 0.

f̃ g̃

For every map φ ∈ HomR(M,C), for every α > 0, the map tαφ factors through g, therefore
I HomR(M,C) ⊆ im(g̃), and Ext1

R(M,N) ∼= coker(g̃) ≈ 0.
For the second part, since ker(f) is almost zero, so is HomR(M, ker(f)) ∼= ker(f̃). For the

exactness at N2, we know that the inclusion im(f) ⊆ ker(g) is almost surjective; for every
φ ∈ HomR(M, ker(g)), for every α > 0, tαφ has image in im(f), therefore the inclusion

HomR(M, im(f)) ↪→ HomR(M, ker(g)) ∼= ker(g̃)

is almost surjective. In particular, if N3 = 0 (i.e. if f is an almost isomorphism), f̃ is an almost
isomorphism.

Now, suppose M is almost projective and g is almost surjective. Since g : N2 → im(g) is
surjective, the induced map HomR(M,N2) → HomR(M, im(g)) is almost surjective. Moreover,
since 0 → im(g) → N3 → 0 is almost exact, HomR(M, im(g)) → HomR(M,N3) is an almost
isomorphism, therefore the composition HomR(M,N2)→ HomR(M,N3) is almost surjective.
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Lemma 2.3.2. Let P and Q be almost projective R-modules. The R-module P ⊗ Q is almost
projective.

Proof. Take an exact sequence of R-modules 0 → N1 → N2 → N3 → 0. Since P and Q are
almost projective, by 2.3.1.ii we get the following almost exact sequences:

0→ HomR(Q,N1)→ HomR(Q,N2)→ HomR(Q,N3)→ 0;

0→ HomR(P,HomR(Q,N1))→ HomR(P,HomR(Q,N2))→ HomR(P,HomR(Q,N3))→ 0.

Since the composite functor HomR(P,HomR(Q,−)) is naturally isomorphic to HomR(P ⊗Q,−),
by Lemma 2.3.1.i P ⊗Q is an almost projective R-module.

Lemma 2.3.3. Let P1 be a direct summand of an almost projective R-module P . The R-module
P1 is almost projective.

Proof. Let P ∼= P1 ⊕ P2. Given a surjective map f : M � N , let’s call f̃ : HomR(P,M) →
HomR(P,N) the induced map. Since P is almost projective, the following modules are almost
zero:

HomR(P,N)

f̃(HomR(P,M))
∼=

HomR(P1, N)⊕HomR(P2, N)

f̃(HomR(P1,M)⊕HomR(P2, N))
∼=

HomR(P1, N)

f̃(HomR(P1,M))
⊕ HomR(P2, N)

f̃(HomR(P2,M))
.

In particular HomR(P1, N) ≈ f̃(HomR(P1,M)), so HomR(P1,M)) → HomR(P1, N) is almost
surjective and P1 is almost projective.

Remark 2.3.4. Similar properties are true for almost flat modules, and the proofs are analogous.

Now we will show that almost-projectiveness and almost-flatness are related in a similar way
as classical projectiveness and flatness.

Lemma 2.3.5. Let P be an almost projective R-module. Then P is almost flat.

Proof. Let C be any R-module and take an exact sequence 0→ K → F → C → 0, where F is a
free R-module. Tensoring by P we get the following exact sequence:

0 Tor1
R(C,P ) K ⊗ P F ⊗ P C ⊗ P 0,

where we used that Tor1
R(F, P ) = 0 because F is free, and hence flat.

Let Q be an arbitrary injective module and apply the exact functor HomR(·, Q):

0 HomR(Tor1
R(C,P ), Q) HomR(K ⊗ P,Q) HomR(F ⊗ P,Q) HomR(C ⊗ P,Q) 0.

f g

From the properties of the tensor product, the functor HomR(·⊗P,Q) is naturally isomorphic
to HomR(P,HomR(·, Q)), composition of the functor HomR(P, ·), which is "almost" exact, and
HomR(·, Q), which is exact. This means that applying it to 0 → K → F → C → 0 we get an
exact sequence:

HomR(P,HomR(K,Q)) HomR(P,HomR(F,Q)) HomR(P,HomR(C,Q)) 0,
f ′ g′

with the added property that f ′ is almost injective.

19



The natural isomorphism of the two functors sends f to f ′ and g to g′, therefore f is almost
injective and HomR(Tor1

R(C,P ), Q) ≈ 0.
We can choose Q such that there is an injective map i : Tor1

R(C,P ) ↪→ Q. Since the module
HomR(Tor1

R(C,P ), Q) is almost zero, tαi is the zero map for every α > 0. It follows that
tα Tor1

R(C,P ) = 0 for every α > 0, i.e. Tor1
R(C,P ) ≈ 0.

Proposition 2.3.6. Let P be a finitely presented, almost flat R-module. Then P is almost
projective.

Proof. Fix an injective R-module Q, and call −̃ : R−Mod→ R−Mod the functor HomR(−, Q).
For any R-modules M,N , there is a natural morphism αM,N : Ñ ⊗M → ˜HomR(M,N) such
that αM,N (f ⊗ x) is the map that sends g ∈ HomR(M,N) to f(g(x)). Let’s prove that if M is
finitely presented αM,N is an isomorphism. If M ∼= Rm for some finite m, we have the following
chain of isomorphism:

Ñ ⊗R Rm ∼= HomR(N,Q)m ∼= HomR(Nm, Q) ∼= Ñm ∼= ˜HomR(Rm, N),

and the composite isomorphism is αRm,N .
In general, if M is finitely presented, there is an exact sequence Rk → Rn → M → 0. The

functors Ñ ⊗− and ˜HomR(−, N) are both right exact, so we get the following diagram:

Ñ ⊗Rk Ñ ⊗Rn Ñ ⊗M 0

˜HomR(Rk, N) ˜HomR(Rn, N) ˜HomR(M,N) 0.

α
Rk,N αRn,N αM,N

The diagram commutes because α is a natural transformation, and since αRn,N and αRk,N are
both isomorphism, αM,N is also an isomorphism by the five lemma.

Now onto the main part of the proof. LetM be any R-module and take an injective R-module
J so that we have a short exact sequence:

0 M J C 0.

Let P be a finitely presented, almost flat R-module. If we apply the functor HomR(P,−), and
then the exact functor HomR(−, Q), since J is injective we get the following exact sequence:

0 ˜Ext1
R(P,M) ˜HomR(P,C) ˜HomR(P, J) ˜HomR(P,M) 0.

If instead we apply the exact functor HomR(−, Q) and then the functor −⊗ P , we get an exact
sequence:

Tor1
R(M̃, P ) C̃ ⊗ P J̃ ⊗ P M̃ ⊗ P 0,

where the leftmost module is almost zero because P is almost flat. Since α is a natural isomor-
phism, the rightmost parts of these sequences are isomorphic. This implies that ˜Ext1

R(P,M) is an
almost zero module. We can choose Q such that there is an injective map i : Ext1

R(P,M)→ Q:
this map must be zero when multiplied by tα for all α; in particular, its image, which is isomorphic
to Ext1

R(P,M), must be I-torsion, therefore almost zero.
By varying M , we get that P is an almost projective R-module.
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Let’s now reexamine the concept of faithful flatness in the almost sense.

Proposition 2.3.7. Let P be an almost flat R-module. The following are equivalent:

• as an R-module, P is almost faithfully flat;

• for every R-module M , M ≈ 0 if and only if M ⊗ P ≈ 0;

• for every ideal J ⊆ R, if R/J 6≈ 0, then P/JP 6≈ 0.

Proof. Assume (2) and take f : M → N such that the induced map f̃ : M ⊗P → N ⊗P is zero.
By the right exactness of tensor product we get 0 = im(f̃) = im(f)⊗P , therefore im(f) ≈ 0, i.e.
the map f is almost zero.

Assume (1) and take M such that M ⊗P ≈ 0. By almost faithful flatness, we have an almost
injective map HomR(R,M)→ HomR(P,M ⊗ P ) ≈ 0, therefore M ∼= HomR(R,M) ≈ 0.

(2) obviously implies (3) by taking M := A/J . Vice versa, if M ⊗ P ≈ 0, choose x ∈M and
consider the submodule generated by x, which is isomorphic to R/Ann(x). Since P is almost flat,
the inclusion R/Ann(x) ↪→ M induces an almost injective map R/Ann(x) ⊗ P → M ⊗ P ≈ 0,
therefore R/Ann(x) ≈ 0 by our hypothesis. Since x is arbitrary, this means every element of M
is killed by multiplication with tα for all α, i.e. M ≈ 0.

Another way to work with almost faithfully flat modules is to use the evaluation map, as
shown in the following lemma.

Lemma 2.3.8. Let R be an A-algebra, P a (IR-)almost projective R-module. Consider the
natural map evP/R : P ⊗ HomR(P,R) → R given by the evaluation, and call EP/R the image of
this map. The following statements are true:

• for every morphism of algebras R→ R′, if P ′ := P ⊗R R′, we have EP ′/R′ ≈ EP/RR′;

• the ideal EP/R ≈ 0 if and only if P ≈ 0;

• the ideal EP/R ≈ R if and only if P is almost faithfully flat.

Proof. • Consider a free module F := R(J) with a surjective map φ : F → P . For any j ∈ J ,
denote by pj : F → R the projection on the j-th component, and with ej : R → F the
inclusion on the j-th component, so that pi ◦ ej = δijidR and

∑
j ej ◦ pj = idF (this sum

is finite because for every x ∈ F there is only a finite number of j such that pj(x) 6= 0).
Since P is almost projective, we make use of its lifting property, and take for every α > 0
ψα ∈ HomR(F, P ) such that φ ◦ ψα = tαidP . Let’s prove the following:

IEP/R ⊆ 〈pi ◦ ψα ◦ φ ◦ ej(1)|i, j, α〉R ⊆ EP/R,

Every generator of the center ideal can be obtained as evP/R(φ ◦ ej(1), pi ◦ ψα).

On the other hand, take f : P → A and x ∈ P . Since φ is surjective, we can write
x = φ(

∑
j ajej(1)), where aj ∈ A are all zero except for a finite number of indices. For

every α > 0 we have:

tαf = (f ◦ φ) ◦ ψα = f ◦ φ ◦

(∑
i

ei ◦ pi

)
◦ ψα =

∑
i

(f ◦ φ ◦ ei) ◦ pi ◦ ψα,
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where f ◦ φ ◦ ei : R → R can be thought of as an element bi ∈ R. Putting the formulas
together we get that tαf(x) =

∑
i,j ajbipi◦ψα◦φ◦ej(1), and since α, f and x are arbitrary,

we get:
IEP/R ⊆ 〈pi ◦ ψα ◦ φ ◦ ej(1)|i, j, α〉R ⊆ EP/R,

which proves our claim.

Given a morphism of algebras R→ R′, with P ′ := P ⊗R R′, we have:

EP ′/R′ ≈ 〈pi ◦ ψα ◦ φ ◦ ej(1)|i, j, α〉R′ ≈ 〈pi ◦ ψα ◦ φ ◦ ej(1)|i, j, α〉RR′ ≈ EP/RR′.

• For the second point, the left implication is obvious. Vice versa, if EP/R ≈ 0, for every
i, j, α the element pi ◦ ψα ◦ φ ◦ ej(1) is almost zero. Like before, take any x ∈ P and write
it as

∑
j ajφ ◦ ej(1). We have:

0 ≈
∑
i,j

ajφ ◦ ei ◦ (pi ◦ ψα ◦ φ ◦ ej(1)) =
∑
j

ajφ ◦ ψα ◦ φ ◦ ej(1) = tα
∑
j

bjφ ◦ ej(1) = tαx,

therefore tαx is I-torsion. Since x and α were arbitrary, every element in P is I-torsion,
i.e. P ≈ 0.

• For every ideal J ⊆ R such that R/J 6≈ 0 (which happens if and only if IR 6⊆ J) we have:

P/JP (∼= P ⊗R/J) 6≈ 0⇐⇒ E P
JP /

R
J

(≈ EP/RR/J) 6≈ 0⇐⇒ IEP/R 6⊆ J.

Remembering that by Lemma 2.3.5 P is almost flat, Lemma 2.3.7 tells us that the left
hand side is true (for all J such that IR 6⊆ J) if and only if P is almost faithfully flat. If
the right hand side is true for all J , J can’t be equal to IEP/R, therefore IR ⊆ IEP/R; vice
versa, if IR ⊆ IEP/R, obviously the right hand side is true for all J which don’t contain
IR.

To wrap up, we have proven that P is almost faithfully flat if and only if IR ⊆ IEP/R, i.e.
if and only if EP/R ≈ R.

2.4 Ramification and étaleness

In this section we will talk about unramified and étale extensions, and we will show the proper
way to translate these concepts into the language of almost mathematics, using the notions we
already explored in the previous sections.

2.4.1 The module of Kähler differentials

We will remind the construction of the module of Kähler differentials and some of its basic
properties. All the relative proofs can be found in [Sta21, Section 10.131].

For the rest of this subsection, A and B will be commutative rings.

Definition 2.4.1. Let f : A → B be a ring map and M a B-module. An A-derivation of B
into M is an A-linear map d : B → M that satisfies the Leibniz rule: for every b1, b2 ∈ B,
d(b1b2) = b1d(b2) + b2d(b1). The set of A-derivations of B into M is called DerA(B,M).

22



Remark 2.4.2. The B-module structure on M induces a B-module structure on DerA(B,M).
Moreover, any map of B-modules M → N induces, via the composition, a B-linear map
DerA(B,M) → DerA(B,N). It’s easy to see that this implies that the derivations determine
a functor DerA(B,−) : B −Mod→ B −Mod.

Proposition 2.4.3. Let f : A→ B be a ring map.

• The functor DerA(B,−) : B −Mod→ B −Mod is representable, which means that there
is a B-module ΩB/A and a derivation d : B → ΩB/A such that the natural transformation
HomB(ΩB/A,−)⇒ DerA(B,−) which sends f to f ◦ d is an isomorphism.

• Consider the multiplication map m : B ⊗A B → B and call I its kernel. There is an
isomorphism of B-modules ΩB/A ∼= I/I2.

Proof. We give a sketch of the proof.
We can prove both statements together by finding a derivation d : B → I/I2 such that

I/I2 and d satisfy the first point. First, we have to check that I/I2 has a natural structure of
B-module. It comes from the following isomorphism:

I/I2 ∼= I ⊗B⊗AB (B ⊗A B)/I ∼= I ⊗B⊗AB B,

and it can be easily checked that, for every x ∈ I/I2 and b ∈ B, we have b·i = (b⊗1)·i = 1⊗(b·i).
Let’s define d as the composition of the map from B to I that sends an element b to b⊗1−1⊗b,

and the projection onto I/I2: we want to prove that it is a derivation. Obviously d is A-linear,
so we just have to check the Leibniz rule:

d(b1b2) = (b1b2)⊗ 1− 1⊗ (b1b2) = (b1b2)⊗ 1− b1 ⊗ b2+b1 ⊗ b2 − 1⊗ (b1b2) = b1d(b2)−d(b1)b2.

Now we can prove that the map − ◦ d provides the following isomorphism for every B-module
M :

HomB(I/I2,M)⇒ DerA(B,M).

We will just give a description of the inverse map, without checking that it has all the necessary
properties. Take a derivation δ : B → M ; via the properties of the tensor product, we can get
two maps δ1, δ2 : B ⊗A B → M , the first B-linear on the left and the second B-linear on the
right, such that δ1(b1 ⊗ b2) = b1δ(b2) and δ2(b1 ⊗ b2) = δ(b1)b2. Their sum, restricted to I,
factors through the quotient I/I2: we call this function δ̃; moreover, it’s easy to check that δ̃ is
B-linear and that δ → δ̃ is the inverse map to − ◦ d.

Definition 2.4.4. The module ΩB/A is called the module of Kähler differentials of B over A.

2.4.2 Unramified morphisms
We will now give two alternative definitions of unramified morphism: the first will use the
definition of the module of differentials, while the second will allow us to generalize this concept
to almost mathematics.

Definition 2.4.5 (Definition 1). A module-finite ring map A → B is said to be unramified if
ΩB/A = 0.

Definition 2.4.6 (Definition 2). A module-finite ring map A→ B is said to be unramified if B
is projective as a B ⊗A B-module, via the multiplication map m : B ⊗A B → B.

Proposition 2.4.7. The previous definitions are equivalent.
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Proof. By Proposition 2.4.3, if ΩB/A = 0, I := ker(m) = ker(m)2. To describe I more explicitly,
let’s prove the following:

I = SpanB⊗AB({b⊗ 1− 1⊗ b|b ∈ B}).

One inclusion is obvious. Vice versa take an element x ∈ I with x =
∑
j b
′
j ⊗ b′′j . For every j, we

can add the element b′j ⊗ 1(b′′j ⊗ 1− 1⊗ b′′j ), which is contained on the right hand side; we get:

y :=
∑
j

(
b′j ⊗ b′′j + (b′jb

′′
j ⊗ 1− b′j ⊗ b′′j )

)
=
∑
j

b′jb
′′
j ⊗ 1 =

∑
j

b′jb
′′
j

⊗ 1.

Since y ∈ I, it’s in the kernel of the multiplication map, so
∑
j b
′
jb
′′
j = 0, therefore y = 0 and x

is contained in the left hand side.
Fixed a set {b1, · · · , bk} of A-generators for B, we have that

SpanB⊗AB({b⊗ 1− 1⊗ b|b ∈ B}) = Span B⊗AB({bi ⊗ 1− 1⊗ bi}i),

which means that I is finitely generated as a B⊗AB-module. Since I2 = I, by Nakayama’s lemma
we deduce that there is an element e ∈ 1 + I such that eI = 0. If we write e = 1 + i, we get that
e2 = e(1 + i) = e+ ei = e, i.e. e is an idempotent. Obviously B⊗AB = (e)B⊗AB + (1− e)B⊗AB ;
moreover, the two submodules are direct summands because, if x = ey = (1 − e)z is in their
intersection, x = ex+(1−e)x = e(1−e)z+(1−e)ey = (e−e2)z+(e−e2)y = 0. Since eI = 0, this
decomposition implies I ⊆ (1− e)B ⊗A B so I ∩ eB ⊗A B = 0. Moreover, m(e) = m(1 + i) = 1,
so m induces a surjective map of B ⊗A B-modules eB ⊗A B → B: since the kernel of this map
is contained in I, it must be 0, therefore B ∼= eB ⊗A B is a direct summand of B ⊗A B, hence
projective as a B ⊗A B-module.

Viceversa, if B is projective as a B⊗AB-module, the multiplication map m induces a decom-
position B⊗AB = B⊕I, where I = ker(m). If we identify B with this ideal of B⊗AB, the multi-
plication map acts as a projection: on one hand B = m(1)B⊗AB, while on the other hand, since
m is a projection and is B⊗B-linear, we get that m(1) = m(m(1)) = m(1 ·m(1)) = m(1) ·m(1).
Moreover, m(1)I = m(I) = 0: with the same reasoning as the previous point we get:

I = (1−m(1))B ⊗A B =⇒ I2 = (1−m(1))2B ⊗A B = (1−m(1))B ⊗A B = I,

therefore, by Proposition 2.4.3, ΩB/A ∼= I/I2 = 0.

We may now define finite étale coverings:

Definition 2.4.8. Let A→ B be a module-finite ring map. It is said to be an étale covering if
the following conditions are verified:

• as an A-module, B is faithfully flat;

• the extension A→ B is unramified.

Remark 2.4.9. The usual definition only requires étale extensions to be flat on the base ring.
However, when the extension is module-finite - like in our definition - the going up theorem proves
that the induced map on the spectra SpecB → SpecA is surjective: this condition, together with
flatness, implies faithful flatness.

We will now include a useful result, that any suitable module-finite extension of rings admits
a localization which is a finite étale covering.

24



Proposition 2.4.10. Let A→ B be a module-finite separable extension of noetherian domains
(with quotient fields K and L respectively). There is some g ∈ A, which we called the discrimi-
nant, such that A[g−1]→ B[g−1] is étale.

Proof. Remember that A[g−1] → B[g−1] is étale if B is a finitely generated, projective, and
almost flat A-module, and it is projective as a B[g−1] ⊗A[g−1] B[g−1](∼= B ⊗A B[g−1])-module.
Let’s divide the proof in two parts:

• There is some f ∈ A such that A[f−1]→ B[f−1] is free.
Since the extension K → L is finite and separable, there is some α ∈ L such that:

L = K(α) =

n−1⊕
i=0

Kαi,

where n = [L : K]; up to multiplying α by a factor inK, we can assume α ∈ B, whith monic
polynomial µ of degree n. We have an inclusion of A-modules i : A⊕Aα⊕· · ·⊕Aαn−1 → B,
which becomes an isomorphism after tensorization by the flat A-module K; in particular,
if C := coker(i), C ⊗A K = 0. Since B is a finitely generated A-module, so is C, and
we can take a finite set of generators {c1, · · · , ck}; for every ci, the corresponding element
ci ⊗ 1 ∈ C ⊗A K is zero, which means that there is some ai ∈ A \ {0} such that aici = 0.
Call f the product of the ai’s: since it kills all the generators of C, it belongs to AnnA(C),
therefore if we invert f the map i becomes an isomorphism, i.e.:

B[f−1] =

n−1⊕
i=0

A[f−1]αi.

• There is some h ∈ A such that B ⊗A B[h−1]→ B[h−1] is projective.
Call I ⊆ B ⊗A B the kernel of the multiplication map m : B ⊗A B → B. Fixed a set
{b1, · · · , bk} of A-generators for B, in the proof of 2.4.7 we showed that:

I = SpanB⊗AB({b⊗ 1− 1⊗ b|b ∈ B}) = Span B⊗AB({bi ⊗ 1− 1⊗ bi}i).

Consider the natural map m̃ : HomB⊗AB(B,B ⊗A B) → HomB⊗AB(B,B): we just need
to prove that, this map becomes surjective after inverting some h ∈ A. It’s easy to show
that the second module is simply B: on one hand there is an inclusion (of B-modules)
HomB⊗AB(B,B) ⊆ HomB(B,B) ∼= B, while on the other hand every B-linear morphism
from B to B is automatically B ⊗A B-linear. Now, take φ ∈ HomB⊗AB(B,B ⊗A B); for
all b ∈ B we have:

φ(b) = (b⊗ 1)φ(1) = (1⊗ b)φ(1) =⇒ φ(1)(b⊗ 1− 1⊗ b) = 0,

so φ(1) ∈ AnnB⊗AB(I). Vice versa, for the same reason, for all x ∈ AnnB⊗AB(I) the map
φ(b) := (b⊗ 1)x is B⊗A B-linear, so we have that HomB⊗AB(B,B⊗A B) ∼= AnnB⊗AB(I).
Via this identifications, we can think of m̃ as the multiplication map from AnnB⊗AB(I) to
B.
This map’s image is an ideal of B: let’s prove that it is not zero. For every bi, for all k ≥ 0,
define

b
(k)
i :=

k−1∑
j=0

bji ⊗ b
k−1−j
i
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(so that b(0)
i = 0), and note that

b
(k)
i (bi ⊗ 1− 1⊗ bi) = bki ⊗ 1− 1⊗ bki .

If µi(x) :=
∑
k akx

k is the minimal polynomial of bi with coefficients in A, we can consider
the element b̃i :=

∑
k akb

(k)
i ; we have that:

b̃i(bi⊗1−1⊗bi) =
∑

akb
(k)
i (bi⊗1−1⊗bi) =

∑
ak(bki⊗1−1⊗bki ) = µi(bi)⊗1−1⊗µi(bi) = 0.

This means that the product b̃ :=
∏
i b̃i is in AnnB⊗AB(I). Moreover, we have the equality

m(b
(k)
i ) = kbk−1

i and m is a ring homomorphism, so we get that:

m(b̃) =
∏
i

m(b̃i) =
∏
i

m

(∑
k

akb
(k)
i

)
=
∏
i

(∑
k

akkb
k−1
i

)
=
∏

µ′i(bi),

and since B is a separable extension of A, for all i µ′i(bi) 6= 0, and so is their product.

The inverse of m(b̃) is in L, therefore there is some h ∈ A \ {0} such that h
m(b̃)

∈ B, which

means that m(b̃) divides h. In particular, if we invert h, the localization of the map m̃,
whose image contains m(b̃), becomes surjective, and therefore B[h−1] is projective as a
B ⊗A B[h−1]-module.

To conclude, we just have to take g := hf so that by inverting g both of the previous conditions
are satisfied.

Remark 2.4.11. The hypothesis of separability is satisfied in particular when the quotient fields
of A and B are of characteristic 0.

Example 2.4.12. To show that separability really is a necessary condition, let’s consider the
following extension of fields:

Fp(t) ↪→ Fp(t
1
p ).

This extension is inseparable, since t
1
p has no conjugate roots other than itself. Moreover, since

Fp(t) is a field, it has no nontrivial localizations, so we just need to show that this extension is
ramified. We have:

Fp(t
1
p )⊗Fp(t) Fp(t

1
p ) ∼=

Fp(t)[x]

(xp − t)
⊗Fp(t) Fp(t

1
p ) ∼=

Fp(t
1
p )[x]

(xp − t)
∼=

Fp(t
1
p )[x]

(x− t
1
p )p

.

If we take f(x) ∈ Fp(t
1
p )[x] such that its projection is idempotent, we get that (x− t

1
p ) divides

f(x)2 − f(x) = f(x)(f(x) − 1), so it must divide only one of the two factors, since they are
coprime. This means that f(x)’s projection is either 0 or 1, thus the ring Fp(t

1
p ) ⊗Fp(t) Fp(t

1
p )

does not have nontrivial idempotents, which by the proof of Proposition 2.4.7 means that Fp(t
1
p )

is ramified over Fp(t).

2.4.3 Almost finite étale coverings

For the rest of the chapter, let R, t, I be as in the previous section, and consider almost mathe-
matics with respect to t.
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After we laid down the groundwork in the previous subsection, we can properly generalize
the definitions of non-ramification and étaleness.

Definition 2.4.13. Let R→ S be a module-finite ring map. It is said to be almost unramified
if S is almost projective as an S ⊗R S-module.

Definition 2.4.14. Let R → S be a module-finite ring map. It is said to be an almost étale
covering if the following conditions are verified:

• as an R-module, S is almost faithfully flat;

• the extension R→ S is almost unramified.

Throughout the rest of this thesis, when we talk about almost finite étale maps, we will be
referring to the previous definition.

Let’s note with the following proposition that S is more than almost faithfully flat.

Proposition 2.4.15. Let R→ S be a module-finite ring map, which is almost étale. Then S is
an almost projective R-module.

Proof. Since S is finitely generated as an R-module, so is S ⊗R S. Moreover, as seen in the
proof of Proposition 2.4.7, the kernel I of the multiplication map is finitely generated as an
S⊗RS-module, therefore it is also finitely generated as an R-module. This means that the exact
sequence I → S ⊗R S → S → 0 makes S a finitely presented R-module: by Proposition 2.3.6,
being almost flat, it is also almost projective as an R-module.

Proposition 2.4.16. Let f : R ↪→ S a module-finite ring map which is an almost étale covering.
Then C := coker(f) is an almost projective R-module.

Proof. Tensoring by S the exact sequence 0→ R→ S → C → 0 we get:

S S ⊗ S C ⊗ S 0,
f̃

where f̃(b) = b ⊗ 1. The multiplication map m : S ⊗ S → S sends b1 ⊗ b2 to b1b2, therefore
m ◦ f̃ = idS : not only f̃ is injective, but the sequence splits and we can write S⊗S ∼= S⊕C ⊗S
as S-modules.

S ⊗ S is an almost projective S-module by Lemma 2.3.2, and C ⊗ S is almost projective by
Lemma 2.3.3 because it is a direct summand of S ⊗ S.

LetM be any R-module, and take a short exact sequence 0→M → Q→ K → 0, where Q is
an injective module. Since Q is injective, Ext1

R(C,Q) = 0, so if we apply the functor HomR(C, ·)
we get the following exact sequence:

0 HomR(C,M) HomR(C, I) HomR(C,K) Ext1
R(C,M) 0.

Since S is almost projective, applying the functor HomR(S, ·) we get an almost exact sequence:

0 HomR(S ⊗ C,M) HomR(S ⊗ C,Q) HomR(S ⊗ C,K) HomR(S,Ext1
R(C,M)) 0,

where we used that the functors HomR(S,HomR(C, ·)) and HomR(S ⊗ C, ·) are naturally iso-
morphic. Since S ⊗ C is almost projective, the following sequence is almost exact:

0 HomR(S ⊗ C,M) HomR(S ⊗ C,Q) HomR(S ⊗ C,K) 0,
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so we have HomR(S,Ext1
R(C,M)) ≈ 0.

Assume by contradiction that Ext1
R(C,M) 6≈ 0: there is an element x ∈ Ext1

R(C,M) such
that IR 6⊆ Ann(x). By Lemma 2.3.8, since S is almost faithfully flat, IR ⊆ ES/R: there is an
element a ∈ ES/R \ Ann(x). Take any f : S → R such that for some b ∈ S f(b) = a: f induces
a map f̃ : S → R/Ann(x) ∼= 〈x〉R ⊆ Ext1

R(C,M) which is not killed by all the elements in I: it
follows that HomR(S,Ext1

R(C,M)) 6≈ 0, which is a contradiction.

Remark 2.4.17. The hypothesis of being unramified was not used in this proof, since we only
needed that S is almost projective and almost faithfully flat as an R-module

Remark 2.4.18. Since this is the transposition to the language of almost mathematics of the
property that finite étale coverings split, we can say that almost finite étale coverings almost
split.

Remark 2.4.19. If we operate with the additional condition that the base ring is complete, a
finite étale covering has a much stronger property: it splits as a map of algebras. However, we
will not dive deeper into this result, since it will not be needed in this thesis.

In the following chapter we will introduce some basic concepts of perfectoid theory from
Scholze’s article [Sch12]. In this context we will finally formulate Faltings’ almost purity theorem.
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Chapter 3

Perfectoid spaces

3.1 Perfectoid algebras and almost mathematics

Here we will present the basic definitions and results regarding perfectoid fields and algebras -
details can be found in [Sch12]. Many of the following propositions will not be directly used in
the proof of the main theorem, but they are collected here in an orderly fashion as to provide
context for the mathematics used in the next subsection.

Definition 3.1.1. Let’s give some definitions for the language that will be used in this chapter.

• Given a field K, we will call valuation a function | · | : K → R≥0 such that:

– we have |x| = 0 if and only if x = 0;

– for all x, y ∈ K, |xy| = |x| · |y|;
– for all x, y ∈ K, |x+ y| ≤ max{|x|, |y|}.

In this case, the couple (K, | · |) is called a normed field, and the image of K \ {0} via | · |
is called the group of valuation.

• The normed field (K, | · |) is said to be complete if it is complete with respect the topology
induced by | · |.

• A Banach K-algebra is a couple (R, || · ||), where R is a K algebra and || · || : R → R≥0 is
a function such that:

– we have ||x|| = 0 if and only if x = 0;

– for all x, y ∈ K, ||xy|| ≤ ||x|| · ||y||;
– for all x, y ∈ K, ||x+ y|| ≤ ||x||+ ||y||.
– for all x ∈ R, for all λ ∈ K, we have ||λx|| = |λ| · ||x||.
– the ring R is complete with respect to the topology induced by || · ||.

• The ring R◦ of powerbounded elements consists of all the elements x ∈ R such that the set of
positive real numbers {||xn||}n is bounded. In particular, if R = K, K◦ = {x ∈ K||x| ≤ 1}
is a local ring.
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• The set R◦◦ of topologically nilpotent elements consists of all the elements x ∈ R such that
liminfn||xn|| = 0. In particular, if R = K, K◦◦ = {x ∈ K||x| < 1} is the maximal ideal of
K◦ and it will be called m.

Example 3.1.2. The ring of p-adic integers Zp admits a valuation | · |p that maps any non zero
element x to p−e(x), where e(x) is the maximal exponent such that pe(x) divides x. This valuation
can be extended to its fraction field Qp, the field of p-adic numbers, making (Qp, | · |p) a complete
normed field.

Let’s define perfectoid fields.

Definition 3.1.3. A perfectoid field is a complete normed field (K, | · |) such that:

• its group of valuation Γ ⊆ R≥0 is nondiscrete;

• the local ring (K◦,m) has residue characteristic p;

• the Frobenius endomorphism on K◦/p (i.e. the map that sends x to xp) is surjective.

For every perfectoid field we will choose ω ∈ K◦ a fixed nonzero element with |p| ≤ ω < 1 (if
K has characteristic 0, we can take ω = p).

Remark 3.1.4. If K has characteristic p, K◦/p = K◦, and the Frobenius endomorphism is
surjective if and only if K is a perfect field.

Example 3.1.5. Consider the ring Zp[p
1
p∞ ] as constructed in Example 2.0.1. We can extend (in

a unique way) the p-adic valuation | · |p to this ring, and complete it with respect to the induced
topology. We will denote the resulting ring, its quotient field, and its maximal ideal respectively
in the following way:

̂
Zp[p

1
p∞ ],

̂
Qp(p

1
p∞ ), (p

1
p∞ ).

It’s easy to check that:

• the field ̂
Qp(p

1
p∞ ) is a perfectoid field;

• the ring ̂
Zp[p

1
p∞ ] is its local ring of powerbounded elements;

• the ideal (p
1
p∞ ) is the ideal of topologically nilpotent elements.

From now on, K will always denote a perfectoid field.

Lemma 3.1.6. The group of valuations Γ is (multiplicatively) p-divisible.

Proof. For every x̄ ∈ K◦/p \ {0}, any lifting x ∈ K◦ has norm greater than |p|, therefore they
all have the same norm. Since the Frobenius is surjective, for every x ∈ K◦ with |p| < |x| ≤ 1,
x̄ 6= 0 and there is y ∈ K◦ such that ȳp = x̄, therefore |y|p = |x|. Since the norm is nondiscrete,
there is at least an x with |p| < |x| < 1, and every element of K◦ can be recursively written
as a product of elements with this property: thus for every x ∈ K◦ there is y ∈ K◦ such that
|y|p = |x|.

The main concept around which much of the perfectoid theory is built is the tilting operation,
a construction that we will explain with the following chain of propositions.
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Proposition 3.1.7. Consider the ring K◦/ω, of characteristic p, and call Φ : x 7→ xp its Frobe-
nius endomorphism. The projection π : K◦ → K◦/ω induces an isomorphism of topological
multiplicative monoids: π̃ : lim←−x→xp K

◦ → lim←−Φ
K◦/ω. In particular, there is a natural mul-

tiplicative map lim←−x→xp K
◦ → K◦ which sends f to f#, given by the projection on the first

coordinate.

Proof. Let’s construct a map from lim←−Φ
K◦/ω to K. Any element on the left hand side can be

thought of as a sequence x := (x̄
1
pn )n; take two different lifting of each element in K◦: (xn)n

and (x′n)n. Let’s consider the sequences xp
n

n and x′
pn

n and write x′n − xn = aω, with a ∈ K◦;
then xp

n

n − x′
pn

n = bpn + ap
n

ωp
n

, which is divisible by ωn: if the two sequences have a limit in
K◦, it does not depend on the lifting.

For the existence, remember that xpn+1 and xn are congruent modulo ω: call their difference
cω with c ∈ K◦. Like before, xp

n+1

n+1 − xp
n

n is divisible by ωn, therefore the sequence converges.
Call x# this limit: our map will send x to x#.

Let’s prove the multiplicativity: if x lifts to (xn)n and y lifts to (yn)n, one lifting of xy is
(xnyn)n, and (xy)# = limn(xnyn)p

n

= limn x
pn

n limn y
pn

n = x#y#. For the continuity, if x and
y coincide on the first k coordinates, then we can lift them to sequences (xn)n and (yn)n that
also coincide on the first k coordinates. Since ω divides xp

n

k+n − y
pn

k+n, like before xp
k+n

k+n − y
pk+n

k+n

is divisible by ωk: the same will be true for x# − y#.
Now, if x = (x̄

1
pn )n ∈ lim←−Φ

K◦/ω, we can call x
1

pk := (x̄
1

pk+n )n, and define a (continuous and

multiplicative) map h̃ : lim←−Φ
K◦/ω → lim←−x→xp K

◦ which sends x = (x̄
1
pn )n to ((x

1
pn )#)n. Since

(x
1
pn )# ≡ x̄

1
pn mod ω, π̃ ◦ h̃ is the identity. Conversely, every (x

1
pn )n ∈ lim←−x→xp K

◦ is a lift of

its own projection, therefore (π̃(x
1
pn )n)# = limn(x

1
pn )p

n

= x; it follows that h̃ ◦ π̃ is the identity,
therefore both maps were isomorphisms.

Remark 3.1.8. Since Φ is a ring homomorphism, lim←−Φ
K◦/ω is a ring, therefore the isomorphism

we just found induces a natural ring structure on lim←−x→xp K
◦.

Proposition 3.1.9. The norm on K induces on lim←−Φ
K◦/ω a multiplicative map f 7→ |f#|: it

is a valuation.

Proof. To show that the map f 7→ |f#| is a valuation, it suffices to check that, for all the elements
f, g ∈ lim←−Φ

K◦/ω, |(f + g)#| ≤ max{|f#|, |g#|}. We will write f = (f̄
1
pn )n and g = (ḡ

1
pn )n.

From the proof of the previous proposition, we know that for some big enough m, any lifting f̃
of f̄

1
pm is such that |f̃pm | = |f#|; moreover, we can take an m such that this is true at the same

time for f , g, and f + g. If we choose the liftings f̃ , g̃, and f̃g respectively of f̄
1
pm , ḡ

1
pm , and

f̄g
1
pm , such that f̃ + g̃ = f̃g, we get that:

|(f + g)#| = |(f̃ + g̃)|p
m

≤ max{|f̃ |, |g̃|}p
n

= max{|f̃ |p
n

, |g̃|p
n

} = max{|f#|, |g#|}.

Proposition 3.1.10. There is an element ω[ ∈ lim←−Φ
K◦/ω such that |(ω[)#| = |ω|.

Proof. Take x ∈ K◦ such that |x|p = |ω|, and let x̄ ∈ K◦/ω \ {0} be its projection. Consider a
system of p power roots x̃ := (x̄

1
pn )n (which exists because the Frobenius is surjective), and take

its p-th power: ω[ := (0, x̄, x̄
1
p , · · · ). As observed in the previous propositions, (x̃)# ≡ x mod ω,

therefore |(x̃)#| = |x|, which implies that |(ω[)#| = |(x̃p)#| = |(x̃)#|p = |x|p = |ω|.
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Definition 3.1.11. We define K’s tilt as K[ := lim←−Φ
K◦/ω[(ω[)−1].

Remark 3.1.12. The multiplicative map f → f# constructed in Proposition 3.1.7 can be extended
to K[ → K, and K[ also inherits the norm of Proposition 3.1.9.

Without losses of generality, from here on out we will take ω := (ω[)#; in particular, ω will

have a system of p power roots, given by
(

(ω[)
1
pn

)#

.

Remark 3.1.13. With this assumption, since m ⊆ K◦ consists of all the elements with norm
strictly less than 1, we can think of {ω

1

pk }k as a set of generators for m. Since this is the same
requirement as Chapter 2, we may talk about almost mathematics (with respect to ω) also in
the context of perfectoid theory.

Proposition 3.1.14. The natural norm K[ 3 f [ 7→ |(f [)#| induces the limit topology on
lim←−Φ

K◦/ω. Moreover, K[◦ is exactly lim←−Φ
K◦/ω, and K[ is a perfectoid field.

Proof. Let’s prove the second part of the statement first.
Obviously, lim←−x→xp K

◦ ⊆ K[◦ by definition of the norm on K[. Vice versa, take f [ ∈ K[

with |(f [)#| ≤ 1. By definition of K[ there is some N such that (ω[)Nf [ ∈ lim←−x→xp K
◦; write

(ω[)Nf [ = (f0, f1, · · · ). Denoting with ω
1
pn the image in K of the only pn-th root of ω[ ∈ K[,

we have: (
fn

ω
N
pn

)pn
=

f0

ωN
=

(
(ω[)Nf [

)#(
(ω[)N

)# = (f [)# ∈ K◦.

So we can take the sequence (fnω
− N
pn )n ∈ lim←−x→xp K

◦. If multiplied by (ω[)N = (ω−
N
pn )n, it

yields (ω[)Nf [, therefore f [ = (fnω
− N
pn )n ∈ lim←−x→xp K

◦.
Now we want to prove that the Frobenius map on K[◦ is surjective, that the norm on K[ is

nondiscrete, and that K[ is complete with respect to the topology induced by the norm.
The surjectivity of the Frobenius map follows from the identification ofK[◦ we just gave. This

also implies that the norm is nondiscrete, since it suffices to find elements with norm arbitrarily
close to 1, and to do that we can consider all the p-power roots of ω[.

To show that (K[, | ·# |) is complete, it suffices to prove it for K[◦, and we can think its
elements as successions in lim←−Φ

K◦/ω. Consider a Cauchy sequence with respect to the norm

| ·# |: {(x(0)
n )n, (x

(1)
n )n, (x

(2)
n )n, · · · }. For all k, there is m such that for all i, j > m, (x

(i)
n − x(j)

n )n
has norm less that |ω|pk ; in particular, x(i)

n − x(j)
n = 0 for all n ≤ k. Therefore, we get that these

sequences converge pointwise (i.e. in the limit topology of lim←−Φ
K◦/ω) to some element. With

the completeness, we have proven that (K[, | ·# |) is a perfectoid field.
For the first part of the statement, note that we have just shown that Cauchy sequences in

the topology induced by the norm are the same as converging sequences with respect to the limit
topology, and the inverse is obvious by a similar reasoning.

Proposition 3.1.15. We have the following. K[ and lim←−x→xp K are isomorphic as topological
multiplicative monoids. Moreover, if K = p, K[ = K.

Proof. Fix x ∈ K and take (x̄
1
pn )n ∈ lim←−x→xp K. The element x can be written as y

ωk
for some

k, where ω := (ω[)#, and y ∈ K◦. If ω[ = (ω̄
1
pn )n (with n > 0), we can write:

(x̄
1
pn )n =

(
(ȳ(ω̄)−k)

1
pn

)
n

= (ȳ
1
pn )n(ω[)−k,
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so lim←−x→xp K ⊆ K[. Vice versa, as we already wrote, (ω[)−1 =
(

1
ω̄

1
pn
)
n
, so the other contain-

ment is also true.
Finally, if charK = p, lim←−x→xp K

∼= K via the map that sends (x
1
pn )n to x, because every

element x ∈ K admits a system of p-power roots.

Example 3.1.16. Let’s consider again K :=
̂

Qp(p
1
p∞ ), with K◦ =

̂
Zp[p

1
p∞ ], and let’s compute its

tilt. We can take ω = p, therefore:

lim←−
Φ

K◦/ω = lim←−
Φ

̂
Zp[p

1
p∞ ]/p ∼= lim←−

t 7→tp
Fp[t

1
p∞ ]/t ∼= Fp[[t]][t

1
p∞ ].

Thus K[ ∼= Fp((t))(t
1
p∞ ), and in this case we can take ω[ = t.

After this preliminary work, we may present the main classes of objects studied in perfectoid
theory (although we will mainly need just the first category from the following definition).

Definition 3.1.17. As always, let K be a perfectoid field.

• A perfectoid K-algebra R is a Banach K-algebra such that the set of powerbounded ele-
ments R◦ ⊂ R is open and bounded, and the Frobenius endomorphism on R◦/ω is surjec-
tive. A morphism of perfectoid K-algebras is a morphism of Banach K-algebras, and the
corresponding category is called K − perf .

• A perfectoid K◦a-algebra A is an almost ω-adically complete and almost flat K◦a-algebra
A on which the Frobenius endomorphism induces an almost isomorphism A/ω ∼= A/ω

1
p .

A morphism of perfectoid K◦a-algebras is simply a morphism of K◦a-algebras, and the
corresponding category is called K◦a − perf .

• A perfectoid K◦a/ω-algebra is an almost flat K◦a/ω-algebra Ā on which the Frobenius
endomorphism induces an almost isomorphism Ā ∼= Ā/ω

1
p . A morphism of perfectoid

K◦a/ω-algebras is simply a morphism of K◦a/ω-algebras, and the corresponding category
is K◦a/ω − perf .

Example 3.1.18. The main example of a perfectoid K-algebra is R = K〈T
1
p∞ 〉, which is the

algebra obtained by adjoining a variable T and all its p-power roots to K, and taking the ω-adic
completion (we can think of this object as the analogous in perfectoid theory to the ring C[t] in
complex geometry).

To better understand the meaning of a perfectoid K◦a-algebra, let’s explore the definition
with the following proposition.

Proposition 3.1.19. Take M ∈ K◦a −Mod.

1. The following are equivalent:

• as a K◦a-module M is almost flat;

• as a K◦-module, M∗ is flat;

• the K◦-module M∗ has no ω-torsion.

2. If N ∈ K◦ −Mod is flat and M = Na, then M is almost flat and M∗ ∼= Ñ , where
Ñ = {x ∈ N [ω−1]|xm ⊆ N}.
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3. If M is almost flat, then (xM)∗ = x(M∗) for all x ∈ K◦. Moreover M∗/xM∗ ⊆ (M/xM)∗
contains the image of the natural map (M/xωαM)∗ → (M/xM)∗ for all α > 0.

4. If M is almost flat, then M is almost ω-adically complete (i.e. it is almost isomorphic to
lim←−nM/ωnM , in the category K◦a −Mod) if and only if M∗ is ω-adically complete.

Proof. 1. By Proposition 2.1.7 we know that (M∗)
a ≈M , therefore by definition M is almost

flat if Tor1
K◦(M∗, N) ≈ 0 for every K◦-module N , which is implied by M∗’s flatness.

Suppose M to be almost flat. Tensoring by M∗ the inclusion ωK◦ ⊆ K◦ we get an almost
injective map M∗ → M∗, whose kernel N is comprised of the elements of ω-torsion in
M∗. Always by Proposition 2.1.7 we know that M∗ ∼= (Ma

∗ )∗ ∼= HomK◦(m,M∗), and the
isomorphism sends x ∈ M∗ to the map a → ax: in particular, for all x ∈ M∗ there is an
a ∈ m such that ax 6= 0, which means that there are no almost zero elements in M∗. As a
result, N must be 0, so there are no ω-torsion elements in M∗.

Suppose now thatM∗ has no ω-torsion, which means that for every k it has no ω
1

pk -torsion.
An equivalent condition for flatness is that Tor1

K◦(M∗,K
◦/I) = 0 for every proper ideal

I ( K◦, and these can be of only two types: Iα := (ωα) and Jα :=
⋃
β>α Iβ .

Consider the exact sequence 0 K◦ K◦ K◦/Iα 0.·ωα Tensoring by
M∗ we get:

0 Tor1
K◦(M∗,K

◦/Iα) M∗ M∗,
−·ωα

but sinceM∗ has no ωα-torsion, Tor1
K◦(M∗,K

◦/Iα) = 0. For Jα, call j its map of inclusion
into K◦; we get the following commutative diagrams for every β > α:

0 K◦ K◦

0 Jα K◦

−·ωβ

−·ωβ

j

⇒
0 M∗ M∗

0 Tor1
K◦(M∗,K

◦/Jα) M∗ ⊗ Jα M∗.

iβ

−·ωβ

idM∗⊗j

Tensoring by M∗ commutes with colimits, and Jα is the colimit of a diagram {K◦}β>α
whose maps towards the colimit are −·ωβ . Therefore, we get thatM∗⊗Jα is the colimit of
a diagram {M∗}β>α whose maps towards the colimit are iβ . In particular, every element
y ∈ ker(idM∗ ⊗ j can be written as iβ(x) for some β > α and some x ∈M∗, so we have:

0 = idM∗ ⊗ j(y) = (idM∗ ⊗ j) ◦ iβ(x) = xωβ ,

which means that x = 0 because M∗ has no ωβ-torsion. This means that idM∗ ⊗ jα is
injective and Tor1

K◦(M∗,K
◦/Jα) = 0.

2. Again, N flat implies M = Na almost flat. Consider the morphism φ : Ñ → M∗ that
sends x to the map a 7→ ax in HomK◦(m, N) ∼= M∗. Let’s prove φ is injective. Take
y = x

ωn ∈ ker(φ), with x ∈ N . Since φ(y) = 0, we have yωn = 0, therefore x = 0. For the
surjectivity, take f ∈ HomK◦(m, N) and call x := f(ω). For any a ∈ m, multiplication by
x
ω yields:

ax

ω
=
af(ω)

ω
=
f(aω)

ω
=
ωf(a)

ω
= f(a) ∈ N,

therefore x
ω ∈ Ñ , and its image via φ is f .
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3. Since (M∗)
a ≈ M , (x(M∗))

a ≈ xM , but x(M∗) has no ω-torsion, therefore it is flat
and by the previous point x(M∗) = (xM)∗. Since (−)∗ is right adjoint to (−)a, it is
left exact, so the exact sequence 0 → xM → M → M/xM → 0 yields the following
exact sequence: 0 → (xM)∗ → M∗ → (M/xM)∗; in particular there is an inclusion
M∗/(xM)∗ ↪→ (M/xM)∗. Moreover, the respective almost modules are the same because
the composition of functors ((−)∗)

a is isomorphic to the identity on K◦a−Mod, therefore:

(M/xM)∗ = (((M/xM)∗)
a)∗ = ((M∗/(xM)∗)

a)∗ = HomK◦(m,M∗/(xM)∗).

Consider the natural map (M/xωαM)∗ → (M/xM)∗ induced by multiplication by ωα.
If m ∈ (M/xM)∗ can be lifted to m̃ ∈ (M/xωαM)∗ ∼= HomK◦(m,M∗/xω

αM∗), call
n := m̃(ωα) and lift it to ñ ∈ M∗. The element ñ is divisible by ωα if ωα|añ for every
a ∈ m, and we have:

añ = an = am̃(ωα) = m̃(aωα) = ωαm̃(a).

Now let’s take n′ := ñ
ωα ∈M∗. The natural mapM∗ → (M/xM)∗ sends n′ to the following

map in HomK◦(m,M∗/xM∗):

a 7→ an′ = an′ =
an

ωα
=
am̃(ωα)

ωα
=
m̃(aωα)

ωα
=
ωαm̃(a)

ωα
= m̃(a).

4. As already seen in 2.1.7, the functor (−)∗ is right adjoint to the functor (−)a, and (−)a is
right adjoint to the functor (−)!, so they commute with limits. If M is almost ω-adically
complete, we have:

M∗ = (lim←−
n

M/ωnM)∗ = lim←−
n

(M/ωnM)∗ ∼= lim←−
n

M∗/ω
nM∗,

where the last isomorphism is due to the fact that M∗/ωnM∗ ⊆ (M/ωnM)∗ and the
transition map (M/ωn+1M)∗ → (M/ωnM)∗ has image contained in M∗/ωnM∗ for all n,
as proven in the previous point.

Vice versa, if M∗ is ω-adically complete:

M ≈ (M∗)
a = (lim←−

n

M∗/ω
nM∗)

a = lim←−
n

(M∗/ω
nM∗)

a ≈ lim←−
n

M/ωnM,

where the last almost isomorphism is a direct consequence of point (3).

Remark 3.1.20. Given a perfectoid K-algebra, one can define its tilt in the same way as for
K, to obtain a perfectoid K[-algebra. A fundamental result of perfectoid theory states that
the tilting functor induces an equivalence of the corresponding categories of perfectoid algebras
K − perf ∼= K[ − perf ([Sch12, Theorem 5.2]); this has a nice philosophical implication: that
studying rings of mixed characteristic (0, p) is equivalent to studying rings of characteristic p if
one works in the context of perfectoid algebras.

Finally, we may formulate in the language of perfectoid algebras Faltings’ almost purity
theorem:

Theorem 3.1.21 ([Sch12, Theorem 7.9.iii]). Let R be a perfectoid K-algebra, and R → S a
finite étale extension. Then S is perfectoid and S◦ is almost finite étale over R◦.
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3.2 Perfectoid spaces

This section follows [Sch12, Chapter 6]. Scholze’s aim is to assign a topological space and an
associated sheaf to a given perfectoid K-algebra, in the same way as with adic spaces.

We will start with some basic construction, and talk about the results we need, mainly the
lemmas 3.2.6, 3.2.7, and 3.2.8. After that, for the sake of completeness, we will highlight the
main results of [Sch12, Chapter 6], of which the aforementioned lemmas are very particular cases:
Lemma 3.2.9 and Theorem 3.2.10.

First, we construct the underlying space.

Definition 3.2.1. A perfectoid affinoid K-algebra is a pair (R,R+), where R is a perfectoid
K-algebra and R+ ⊆ R◦ is an open and normal subring.

X := Spa(R,R+) = {v : R→ Γ ∪ {0} continuous valuation|∀f ∈ R+ : v(f) ≤ 1}/ ∼,

where Γ is the value group of K. For any x ∈ X we will write the associated valuation as
f 7→ |f(x)|. This space will be given the topology generated by the following so-called rational
subsets:

U

(
f1 · · · fn

g

)
:= {x|∀i |fi(x)| ≤ |g(x)|},

where g ∈ R and f1, · · · , fn ∈ R generate R as an R-module.

Remark 3.2.2. Since R+ is integrally closed in R◦, it can be easily shown that mR◦ ⊆ R+ ⊆ R◦.
In particular, all the possible choices for R+ are almost isomorphic to R◦.

We now associate a pair of rings to all rational subsets.

Definition 3.2.3. Let U = U
(
f1,··· ,fn

g

)
. Choose an open subring R0 ⊆ R such that {aR0}a∈K∗

is a basis of open neighborhoods of 0. Consider the algebra R[g−1] and equip it with the topology
making {aR0[ f1g , · · · ,

fn
g ]}a∈K∗ a basis of open neighborhoods of 0. Finally let B ⊆ R[g−1] the

normalization of R+[ f1g , · · · ,
fn
g ]. We define the pair (OX(U),O+

X(U)) as the completion of the
pair (R[ f1g , · · · ,

fn
g ], B).

Remark 3.2.4. Scholze proves that this association can be extended to all open subsets by tak-
ing a limit, making OX and O+

X two sheaves on X such that, for any open set W , the pair
(OX(W ),O+

X(W )) will itself be a perfectoid affinoid K-algebra. Anyway, we won’t need this sort
of construction in this thesis.

Remark 3.2.5. We can define a natural map X → X[ that sends the valuation R 3 f 7→ |f(x)|
to the valuation R[ 3 g 7→ |g#(x)|. The preimage of a generic rational subset U

(
f1,··· ,fn

g

)
⊆ X[

is given by the rational subset U
(
f#
1 ,··· ,f

#
n

g#

)
⊆ X, therefore this map is continuous.

We present the following approximation lemma, the quite technical proof of which we won’t
include.

Lemma 3.2.6 ([Sch12, Corollary 6.7.i]). For any f ∈ R and any c > 0, ε > 0, there is h(f)c,ε ∈
R[ such that for all x ∈ X we have |f(x)− h(f)#

c,ε(x)| ≤ |ω|1−ε max{|f(x)|, |ω|c}.

With the help of Lemma 3.2.6, it’s possible to show that every rational subset in X can be
written as a preimage of some rational subset in X[ via the map defined in Remark 3.2.5. We
will only prove this result in the following particular case.
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Proposition 3.2.7. Let U ⊆ X be a rational subset of the form U := U
(
f,ωn

ωn

)
for some f ∈ R◦,

n > 0. Then, there is an element f [ ∈ (R[)◦ such that:

• the rational subsets U and U
(

(f[)#,ωn

ωn

)
coincide;

• we have the congruence (f [)# ≡ f mod ω
1
p .

Proof. If we take f [ := h(f)n,1− 1
p
, defined as in Lemma 3.2.6, to prove that U

(
f,ωn

ωn

)
and

U
(

(f[)#,ωn

ωn

)
coincide, we just need to show that there are no x ∈ X for which only one between

|f(x)| and |(f [)#(x)| is greater than |ωn|. If this happened, in particular the two norms would
be different, and we would have, by definition of f [:

max{|f(x)|, |(f [)#(x)|} = |f(x)− (f [)#(x)| ≤ |ω|
1
p max{|f(x)|, |ω|n}.

If |f(x)| > |ωn| ≥ |(f [)#(x)|, we would get that |f(x)| ≤ |ω|
1
p |f(x)| which is a contradiction,

while if |(f [)#(x)| > |ωn| ≥ |f(x)| we would get that |(f [)#(x)| ≤ |ω|
1
p |ω|n, which is again a

contradiction.
For the second point, since f ∈ R[, we get that for all x ∈ X 1 ≥ |f(x)| = |(f [)#(x)|. In

particular, f [ ∈ (R[)◦ and:

|f(x)− (f [)#(x)| ≤ |ω|
1
p max{|f(x)|, |ω|n} ≤ |ω|

1
p ,

which proves the statement.

Let’s prove the following lemma, which allows us to work with a concrete definition of O+
X(U)

for a particular U = U
(
ωm

g

)
.

Lemma 3.2.8. Let g ∈ R◦ be an element such that:

• the element g is not a zero divisor;

• the ring R◦ contains a system of p-power roots of g;

• there is no k such that ω
1

pk |g.

Fix some m and consider the map:

π : R◦
[
T

1
p∞

1

]
→ R◦

[(
ωm

g

) 1
p∞
]

T
1

pk 7→
(
ωm

g

) 1

pk

.

It is surjective, with kernel:
I := ((Tg)

1

pk − ω
m

pk )k.
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Proof. Surjectivity is obvious. Fix some k and consider the induced map:

π : R◦
[
T

1

pk

1

]
→ R◦

[(
ωm

g

) 1

pk

]

T
1

pk 7→
(
ωm

g

) 1

pk

.

If we prove that this map has kernel generated by xk := (Tg)
1

pk − ω
m

pk , passing to the colimit
we get the statement of the lemma.

Inverting ω the right hand side becomes R◦[g−1], and the kernel becomes exactly:(
(Tg)

1

pk − ω
m

pk

)
R◦
[
ω−1, T

1

pk

1

]
,

therefore we just have to prove that the intersection between this module and R◦[T
1

pk

1 ] is (xk).

By contradiction, if this were not the case we could find some f ∈ R◦[T
1

pk

1 ] and α > 0 such that

xkω
−αf is contained in R◦[T

1

pk

1 ], while ω−αf is not. This implies that there is some β > 0 such
that ωβ |xk, which means that some power of ω divides (Tg)

1

pk , which is contrary to the third
hypothesis.

To put this result in context, we present without proof a larger lemma, of which it is a
particular case, that explicitly describes OX(U#) for any rational set U ⊆ X[ at the almost-
integral level.

Lemma 3.2.9 ([Sch12, Lemma 6.4]). Let U := U
(
f1,··· ,fn

g

)
and U# := U

(
f#
1 ,··· ,f

#
n

g#

)
be rational

subsets of R[ (with the same notation as Definition 3.2.1).

(1) Consider the map:

R◦
[
T

1
p∞

1 , · · · , T
1
p∞
n

]
→ R◦

(f#
1

g#

) 1
p∞

, · · · ,
(
f#
n

g#

) 1
p∞


T
1

pk

i 7→ f
1

pk

i .

It is surjective, and its kernel is almost isomorphic to the ideal:

I :=

(
g#

1

pk T
1

pk

i − f#
i

1

pk

)
i,k

(2) The ring R◦
〈(

f#
1

g#

) 1
p∞

, · · · ,
(
f#
n

g#

) 1
p∞
〉

is a perfectoid K◦a-algebra.

(3) OX(U#)◦(≈ O+
X(U#)) is almost isomorphic to R◦

〈(
f#
1

g#

) 1
p∞

, · · · ,
(
f#
n

g#

) 1
p∞
〉
.

(4) The tilt of OX(U#) is given by OX[(U).
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Finally, let’s state the main theorem of [Sch12, Chapter 6], which makes fully explicit the
interplay between the pair (OX ,O+

X) and the tilting operation.

Theorem 3.2.10 ([Sch12, Theorem 6.3]). Let (R,R+) be a perfectoid affinoid K-algebra, and
let X = Spa(R,R+) with associated presheaves (OX ,O+

X). Also, let (R[, R[
+

) be its tilt, and let
X[ = Spa(R[, R[

+
). Then:

• the map X → X[ that sends the valuation R 3 f 7→ |f(x)| to R[ 3 g 7→ |g#(x)| is a
homeomorphism;

• for every rational subset U ⊆ X with image U [ ⊆ X[ the pair
(
OX(U),O+

X(U)
)
is a

perfectoid affinoid K-algebra, with tilt
(
OX[(U [),O+

X[
(U [)

)
;

• the presheaf OX is a sheaf, and O+
X(U) = {f ∈ OX(U)||f(x)| ≤ 1∀x ∈ U}.
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Chapter 4

Almost-pro-modules

In this chapter we talk about pro-modules and their almost analogue, following [Bha18, Section
3-4]. To keep the exposition clean, we will take for granted some notions of category theory.

4.1 Definition of pro-modules

In this section we will give a very quick presentation of pro-modules. Let’s first define what we
mean by pro-module:

Definition 4.1.1. Let R be a (commutative) ring and a N the poset of natural numbers, viewed
as a category where the arrow goes from the bigger number to the smaller. Let F : N→ R−Mod
be a functor, and compose it with the Yoneda embedding Y : R −Mod → [R −Modop,Set].
A pro-R-module is the limit of Y ◦ F in [R−Modop,Set].

We can identify a pro-R-module with a sequence:

M0 M1 M2 M3 · · · .
f1
0 f2

1 f3
2 f4

3

Given two pro-R-modules, {Mi}i and {Nj}j , the morphisms between them are given by:

lim←−
j

lim−→
i

HomR(Mi, Nj).

Concretely, we can think of it as a collection of morphisms φj : Mkj → Nj , where kj ≥ j, with
the obvious commutation conditions between the φj ’s and the transition maps (furthermore, one
can always tweak the indexes without changing the isomorphism class so that ij = j).

Remark 4.1.2. The morphism {φj}j is zero if and only if for all j φj induces the zero map on
Mi → Nj for some large enough i. Consequently, a pro-R-module {Mi}i is zero when its identity
is the zero map, i.e. when for all j there is k ≥ j such that the transition map fkj : Mk →Mj is
zero.

Remark 4.1.3. We can think of an isomorphism between {Mi}i and {Ni}i - after reindexing - as
a collection {fi : Mi → Ni}i such that {ker(fi)}i and {coker(fi)}i (with the obvious transition
maps) are zero as pro-R-modules.
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4.2 Definition of almost-pro-modules
We need to define an analogue version of pro-modules to be used in almost mathematics (with
respect to a certain system {t

1

pk }k in R). As objects, almost-pro-R-modules will be the same as
pro-R-modules. As usual, the crux of the matter is understanding when to define an object as
almost zero - all the other definitions can be obtained in a similar way to what we did in Chapter
2.

Definition 4.2.1. A pro-R-module {Mn}n is said to be almost-pro-zero when for all i, k there
is j ≥ i such that the transition map f ji : Mj →Mi, multiplied by t

1

pk , is zero.
It is said to be uniformly almost-pro-zero if for all k there is some c > 0 such that for all i

the transition map f i+ci : Mi+c →Mi, multiplied by t
1

pk , is zero.

Definition 4.2.2. Let {Mn}n, {Nn}n be two pro-R-modules and let {fn : Mn → Nn}n be a
morphism of pro-R-modules. We say that {fn}n is an almost-pro-isomorphism if the pro-R-
modules {ker(fn)}n and {coker(fn)}n are almost-pro-zero.

Remark 4.2.3. If we denote by Mn[t
1

pk ] ⊆ M the submodule of t
1

pk -torsion, {Mn}n is almost-
pro-zero if and only if, for all k, the natural map {Mn[t

1

pk ]}n → {Mn}n is an isomorphism of
pro-R-modules.

To showcase the good behaviour of Definition 4.2.1 let’s prove some propositions.

Lemma 4.2.4. Let the following be a pointwise exact sequence of pro-R-modules:

0 {Kn}n {Mn}n {Cn}n 0,
{fn}n {gn}n

where {fn}n and {gn}n are morphism of pro-R-modules. If {Mn}n is almost-pro-zero, so are
{Kn}n and {Cn}n.

Moreover, if {Mn}n is uniformly almost-pro-zero, so are {Kn}n and {Cn}n.

Proof. We will prove only the first statement, since the proof for the second is practically the
same. Let {pji}i,j , {q

j
i }i,j , {r

j
i }i,j be the transition maps respectively of {Kn}n, {Mn}n, {Cn}n.

For all i, for all k, there is some j ≥ i such that the map t
1

pk qji is identically zero. We have:

0 = t
1

pk qji ◦ fj = t
1

pk fi ◦ pji ,

and since fi is injective, t
1

pk pji = 0. Similarly, we have:

0 = t
1

pk gi ◦ qji = t
1

pk rji ◦ gj ,

and since gj is surjective, t
1

pk rji = 0.

Proposition 4.2.5. Let {Mn}n be an almost-pro-zero pro-R-module. Then lim←−nMn is almost
zero.

Proof. Call {pji} the transition maps of {Mn}n. Fix a sequence (xn)n which identifies an element
in lim←−nMn. For all k and for all i, there is some j ≥ i such that the map t

1

pk pji is identically

zero, therefore 0 = t
1

pk pji (xj) = t
1

pk xi. This means that for all k t
1

pk (xn)n = 0, which implies
that lim←−nMn is almost zero.
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Proposition 4.2.6. Let {Mn}n be an almost-pro-zero pro-R-module, and consider an R-linear
functor F : R−Mod→ R−Mod. Then {F (Mn)}n is an almost-pro-zero pro-R-module.

Moreover, if {Mn}n is uniformly almost-pro-zero, so is {F (Mn)}n.

Proof. Like before, we will prove only the first statement, since the proof for the second is
practically the same. Fix two integers n, k > 0. Choose m such that the fmn : Mm → Mn is
t

1

pk -torsion, i.e. fmn (Mm) ⊆ Mn[t
1

pk ]; applying F we get that Ffmn : F (Mm) → F (Mn) factors
through F (Mn[t

1

pk ]). Since F is R-linear, it preserves the endomorphism − · t
1

pk ; on the module
Mn[t

1

pk ] this endomorphism is zero, therefore the same happens for F (Mn[t
1

pk ]), and we get a
natural map F (Mn[t

1

pk ])→ F (Mn)[t
1

pk ]. This means that Ffmn factors through F (Mn)[t
1

pk ], i.e.
Ffmn is t

1

pk -torsion.

4.3 Quantitative Hebbarkeitssatz

The following proposition is an analogous to Riemann’s theorem on removable singularities (Rie-
mannscher Hebbarkeitssatz ) in the context of perfectoid theory.

Proposition 4.3.1. Consider a perfectoid ̂
Zp[p

1
p∞ ]-algebra A∞ with a system of p-power roots

{g
1
p∞ } for some non-zero divisor element g ∈ A∞. Furthermore, suppose that no power of p

divides g. Consider the trivial pro-module {A∞/pm}n and the pro-module {A∞〈p
n

g 〉/p
m}n with

the obvious transition maps for some fixed m > 0. Let {fn}n be the morphism of pro-modules
induced by the natural maps A∞/pm → A∞〈p

n

g 〉/p
m. Then:

• the modules ker(fn) = 0 for every n;

• the pro-module {coker(fn)}n is uniformly g-almost-pro-zero.

Proof. By Lemma 3.2.8, we have the following isomorphism:

A∞

〈
pn

g

〉/
pm ∼= A∞

[
u

1
p∞
]/(

pm, (ug)
1
p∞ − p

n
p∞
)
.

Call the rightmost module Mn: we get an induced pro-module {Mn}n, where the transition map
tn+c,n : Mn+c →Mn is given by u

1

pl 7→ (upc)
1

pl for all l.
The induced maps A∞/pm →Mn are injective, so ker(fn) = 0 for all n. For the second part,

we will show that given k > 0 there is a c such that the c-fold transition map tn+c,n : Mn+c →Mn,
multiplied by g

1

pk , has image in A∞/pm ⊆Mn. Since tn+c,n(u
1

pl ) = u
1

pl p
c

pl , we have two cases:

• if c
pl
≥ m, we get that tn+c,n(u

1

pl ) ∈ pmMn = 0;

• if c
pl
< m, g

1

pk tn+c,n(u
1

pl ) = g
1

pk u
1

pl p
c

pl = g
1

pk
− 1

pl (gu)
1

pl p
c

pl = g
1

pk
− 1

pl p
n+c

pl , which is in
A∞/p

m if l > k.

It is sufficient that we choose c = pkm, so that c
pl
< m if and only if l > k.

Remark 4.3.2. The morphism {fn}n is a pg-almost-pro-isomorphism.
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Let’s prove a very useful proposition in the hypotheses given to us by the statement of the
previous theorem. We will assume to be working on a ring R, with an non zero divisor t ∈ R
which has a system of pk-roots, and almost mathematics will be considered with respect to the
ideal (t

1
p∞ ).

Proposition 4.3.3. {fn : Mn → Nn}n be an pro-morphism of pro-R-modules such that the
pro-modules {ker(fn)} and {coker(fn)}n are both uniformly almost-pro-zero.

Then, the natural map lim←−nMn → lim←−nNn is an almost isomorphism.

Proof. Let’s call {pji}i,j the transition maps for {Mn}n and {qji }i,j the transition maps for {Nn}n.
The induced pro-module {im(fn)}n allows us to split the maps fn as gn ◦ hn, where hn is

surjective and gn is injective. Therefore, we can prove the statement in these two simpler cases.

• Suppose that {fn}n is pointwise surjective.

If (xn)n ∈ ker(f̃), we have that for all i fi(xi) = 0, so {xn}n ∈ {ker fn}n. In particular,
this means that (xn)n ∈ lim←−n ker(fn), which is almost zero by Lemma 4.2.5; therefore f̃ is
almost injective.

Take (yn)n ∈ lim←−nNn. Since fn is surjective for all n, we can consider a set {xn}n such

that fn(xn) = yn. Fix some k > 0 and take the constant c such that for all n t
1

pk pn+c
n is

zero when restricted to ker(fn+c). We have that, for all n:

fn+c(p
n+c+1
n+c (xn+c+1)) = qn+c+1

n+c (fn+c+1(xn+c+1)) = qn+c+1
n+c (yn+c+1) = fn+c(xn+c).

This means that pn+c+1
n+c (xn+c+1) − xn+c is contained in ker(fn). From the definition of c

we get that, if we apply to this element t
1

pk pn+c
n (−) we get zero. Rewriting this equality,

we get that:

t
1

pk pn+c
n (xn+c) = t

1

pk pn+c
n (pn+c+1

n+c (xn+c+1)) = t
1

pk pn+c+1
n (xn+c+1).

This allows us to define the sequence (x
(k)
n ) := (t

1

pk pn+c
n (xn+c))n. To verify that it identifies

an element in lim←−nMn, we just need to show the following equality:

pn+1
n (x

(k)
n+1) = pn+1

n (t
1

pk pn+c+1
n+1 (xn+c+1)) = t

1

pk pn+c+1
n (xn+c+1) = t

1

pk pn+c
n (xn+c) = x(k)

n ,

where the second to last equality follows from the previous chain of equalities. Finally:

fn(x(k)
n ) = fn(t

1

pk pn+c
n (xn+c)) = t

1

pk qn+c
n (fn+c(xn+c)) = t

1

pk yn,

therefore f̃((xkn)n) = t
1

pk (yn)n. By repeating the construction for all k, we get that f̃ is
almost surjective.

• Suppose that {fn}n is pointwise injective.

If (xn)n ∈ ker(f̃), we have that for all i fi(xi) = 0, so xi = 0 for all i; therefore f̃ is
injective.

Take (yn)n ∈ lim←−nNn. For all j, call zj ∈ coker(fj) the projection of yj . Since {coker(fn)}n
is almost-pro-zero, for all k ≥ 0, for all i there is some j such that t

1

pk qji is identically zero,
and in particular 0 = t

1

pk qji (zj) = t
1

pk zi. This means that for all i and for all k there is
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some x(k)
i ∈Mi such that fi(x

(k)
i ) = t

1

pk yi, so we get:

fi(p
i+1
i (x

(k)
i+1)) = qi+1

i (fi+1(x
(k)
i+1)) = qi+1

i (t
1

pk yi+1) = t
1

pk qi+1
i (yi+1) = t

1

pk yi = fi(x
(k)
i ).

Since fi is injective, we get, for all i and for all k, pi+1
i (x

(k)
i+1) = x

(k)
i . In particular, the

sequence (x
(k)
i )i identifies an element in lim←−nMn; the image of this element is t

1

pk (yn)n,
therefore, by varying k, we get that f̃ is almost surjective.

Corollary 4.3.4. In the setting of Proposition 4.3.1, i.e. with R := A∞, t := pg, and the
pro-R-modules {Mn}n := {A∞/pm}n and {Nn}n := {A∞〈p

n

g 〉/p
m}n for some m, the hypotheses

of Proposition 4.3.3 are satisfied, therefore we have:

A∞/p
m ∼= lim←−

n

A∞/p
m ≈pg lim←−

n

A∞

〈
pn

g

〉
/pm.

Proposition 4.3.5. In the same setting as Proposition 4.3.3, take some R-module Q and con-
sider the following natural map:

lim←−
n

Ext1
R(Q,Mn)→ lim←−

n

Ext1
R(Q,Nn).

It is a t-almost isomorphism.

Proof. Like in the proof of Proposition 4.3.3, we just have to prove the two cases in which {fn}n
is respectively pointwise surjective and pointwise injective. We will only prove the first case,
since the hypotheses are symmetric and the other case has a very similar proof.

Consider the pro-module {Kn}n := {ker(fn)}n. Applying the functor HomR(Q,−), we get
the following pointwise exact sequence of pro-R-modules for all i:

{ExtiR(Q,Kn)}n {ExtiR(Q,Mn)}n {ExtiR(Q,Nn)}n {Exti+1
R (Q,Kn)}n.

{φn}n

Since for all i Exti(Q,−) is an R-linear functor, and {Kn}n is uniformly almost-pro-zero, by
Proposition 4.2.6 the leftmost and rightmost pro-modules in the exact sequence are uniformly
almost-pro-zero. The leftmost module admits a pointwise surjective map towards the pro-module
{ker(φn)}, while the pro-module {coker(φn)}n admits a pointwise injective map towards the
rightmost module. By Lemma 4.2.4 {ker(φn)} and {coker(φn)}n are uniformly almost-pro-zero,
therefore by Proposition 4.3.3 {φn}n induces an isomorphism of the limits.
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Chapter 5

Proof of the main theorem

5.1 Properties of faithfully flat extensions
The aim of this section is to present some important results on faithful flatness.

Lemma 5.1.1. Let A be a noetherian ring and {Bi}i a filtered diagram of faithfully flat A-
algebras with colimit B. Then B is a faithfully flat A-algebra.

Proof. If we drop the faithfulness condition, this lemma is true in much more generality, without
the requirements of A being noetherian and Bi being algebras. For the faithfulness, take an
A-module M - which we can assume to be finitely generated - and suppose that M ⊗ B = 0:
since tensor product commutes with filtered colimits, 0 = lim−→i

M ⊗ Bi. This implies that for
any i, for any element mi ∈ M ⊗ Bi, there is j > i such that the map M ⊗ Bi → M ⊗ Bj
sends mi to 0. In particular, for any element m ∈M there is some k such that the natural map
fk : M →M ⊗Bk sends m to 0. Considered the filtered system {ker(fi)}i of submodules of M :
by the previous argument, their union is M , but since M is finitely generated over a noetherian
ring, there is some k such that ker(fk) = M . Since M ⊗Bk is generated over Bk by the elements
{m⊗ 1 = fk(m)|m ∈M}, it follows that M ⊗Bk = 0, therefore M = 0 by faithful flatness.

Lemma 5.1.2. Let f : A→ B be a faithfully flat ring map. Let C be a B-module which is flat
(resp. faithfully flat) as an A-module. Then C is also flat (resp. faithfully flat) as a B-module.

Proof. First, let’s prove the flatness. Consider a generic short exact sequence of B-modules
0 → M → N → P → 0. Since the functor − ⊗A C is the composition of the functors − ⊗A B
and −⊗B C, we have the following:

NM0 P 0

N ⊗A CM ⊗A C0 P ⊗A C 0,

M ⊗B C N ⊗B C P ⊗B C 0−⊗AC

−⊗BC

−⊗AB
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where every sequence is exact. Since B is faithfully flat over A, and M ⊗A C → N ⊗A C is
an injective map, so is M ⊗B C → N ⊗B C, therefore C is a flat B-module.Moreover, suppose
that C is a faithfully flat A-module and take a B-module M such that M ⊗B C = 0. Then
M ⊗A C = (M ⊗B C)⊗A B = 0, therefore M = 0.

Lemma 5.1.3 ([Bha18, Proposition 5.1]). Let B be a noetherian ring, and B → C a ring
extension. Suppose that there is π ∈ B such that the extension is (faithfully) flat modulo π, and
both rings are π-adically complete and π-torsion free. Then, the extension B → C is (faithfully)
flat.

Proof. Let’s prove the flatness first. We need to show that Tor1
B(C,M) = 0 for all B-modules

M , but without loss of generality we can assume M to be finitely generated.
We will only prove this when M has no π-torsion. For the other cases, we will give just a

sketch of the proof:

• if M = (B/π)k, we consider the short exact sequence induced by the multiplication by π,
0→ Bk → Bk → (B/π)k → 0 - since C has no π torsion, it remains exact after tensoring
by C, which implies that TornB(C, (B/π)k) = 0 for all n ≥ 1 via the long exact sequence;

• if πM = 0, M is a finitely generated B/π-module, and we can consider a short exact
sequence of B/π-modules 0 → K → (B/π)k → M → 0 - since C/π is flat over B/π,
tensoring by C over B preserves exactness, and with a little induction on the long exact
sequence we get that TornB(C,M) = 0 for all n ≥ 1;

• if πkM = 0 for k ≥ 2, we may work by induction and consider the short exact sequence
0 → πM → M → M/πM → 0 - since the leftmost and rightmost modules are killed by
πk−1, they have the property by inductive hypothesis, so via long exact sequence we get
TornB(C,M) = 0;

• for a generic M , we may consider the exact sequence 0 → K → M → Q → 0, where K is
the submodule of the elements that are killed by πk for some k (which by finite generation
means that πhK = 0 for some h), so that Q has no π-torsion - if these two particular cases
have been solved, via long exact sequence we get that Tor1

B(C,M) = 0.

If M has no π-torsion, we have the following exact sequence:

0 M M M/πM 0.
−·π

If we tensor by C, we get the following exact sequences for all n ≥ 1:

Torn+1
B (C,M/πM) TornB(C,M) TornB(C,M) TornB(C,M/πM).

−·π

The leftmost and rightmost modules are both 0 because M/πM is of π-torsion, therefore for all
n ≥ 1 the endomorphism of TornB(C,M) given by the multiplication by π is an isomorphism, i.e.
TornB(C,M) is π-divisible.

Since M is finitely generated over a noetherian module, we may take a free resolution of M
where all the free modules have finite rank:

· · · Ben+1 Ben · · · Be0 M 0.
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Tensoring by C we get the following sequence:

· · · Cen+1 Cen Cen−1 · · · ,δn δn−1

and by definition, for all n ≥ 1, TornB(C,M) := ker(δn−1)/ im(δn). Since the module TornB(C,M)
is π-divisible, for all k, for all elements x ∈ ker(δn−1), there is some element y ∈ ker(δn−1) such
that x− πky ∈ im(δn). We have the following containments:

im(δn) ⊆ ker(δn−1) = im(δn) + πk ker(δn−1) ⊆ im(δn) + πkBen ,

which means that im(δn) and ker(δn−1) coincide modulo πk. Since C is π-adically complete, we
have:

Cen ∼= (lim←−
k

C/πk)en ∼= lim←−
k

Cen/πk.

We can write any element of Cen as (xk)k with xk ∈ Cen/πk, and we get that:

(xk)k ∈ ker(δn−1)⇔ ∀k xk ∈ ker(δn−1)/(πkC ∩ ker(δn−1))

⇔ ∀k xk ∈ im(δn)/(πkC ∩ ker(δn))

⇔ (xk)k ∈ im(δn),

therefore the two coincide as submodules of Cen and TornB(C,M) = 0.

Let’s now prove that, if B/π → C/π is faithfully flat, so is B → C.

We already know that C is flat over B by the previous point, so we need to show that for all
B-modules M , if C ⊗B M = 0 then M = 0. With some standard finiteness arguments, we can
supposeM to be finitely generated. Since C/π is faithfully flat over B/π and C/π⊗B/πM/π = 0,
we have that M/πM = 0, i.e. M = πM . Since M is finitely generated, by Nakayama’s lemma,
if π belongs to the Jacobson radical of A, M = 0. We just need to show that π ∈ p for every
maximal ideal p ⊆ A. Fix a maximal p and suppose by contradiction that π 6∈ p: by maximality,
for all k, p+πkB = B. This means that p coincides with B modulo π, so with a similar argument
as the previous point, we get that p = B, which is a contradiction.

Corollary 5.1.4. Let {Bk, αi,j}i,j,k a filtered diagram of A0-algebras with no p-torsion, and let
B∞ be the p-adic completion of their colimit. If A0/p → Bk/p is faithfully flat for all k, so is
the map A0 → B∞.

Proof. Since for all i, j αi,j(pBi) ⊆ pBj , we can work modulo p: in this context, the p-adic
completion becomes a trivial functor, so B∞/p = lim−→k

Bk/p. Since A0/p is noetherian, filtered
colimits preserve faithful flatness by Lemma 5.1.1, therefore A0/p→ B∞/p is faithfully flat. For
all k, the map Bk Bk

·p is injective because Bk has no p-torsion; since filtered colimits
are exact, multiplication by p is injective on B∞,0 := lim−→k

Bk. We conclude by proving that the
p-adic completion of a ring with no p-torsion does not have p-torsion: if x := {xi|xi ∈ B∞,0/pi}i
is a p-torsion element in B∞, for all n one must have pxn = 0, i.e. px̃n = pnb for some element
b ∈ B∞,0, where x̃n ∈ B∞,0 is a lifting of xn; therefore x̃n = pn−1c because B∞,0 has no p-
torsion, which means that xn−1 = 0, therefore x = 0. Since the hypotheses of Lemma 5.1.3 are
satisfied, the map A0 → B∞ is faithfully flat.
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5.2 Preliminary constructions

Throughout the rest of the chapter, we will assume A0 to have all the properties of the second
point of Proposition 1.1.8. The first thing that we want to do is to take the problem into the
realm of perfectoid theory. We need a suitably "faithful" extension of the ring A0, which will
also be a perfectoid algebra. For the construction we will need the following structure theorem
for regular rings of mixed characteristic.

Theorem 5.2.1 (Cohen). Let (A,m) be a complete regular local ring of mixed characteristic
(0, p) and dimension d, and let k be its residue field, which we assume to be perfect. Then:

• if p ∈ m \m2, there is an isomorphism W (k)[[x1, · · · , xd−1]] ∼= A;

• if p ∈ m2, there is a surjective map W (k)[[x1, · · · , xd]] � A;

where W (k) is the ring of Witt vectors of k.

Before proceeding, let’s give an additional definition.

Definition 5.2.2. Consider an extension A0 → A, where A admits a system of p-power roots of
p. The ring A is said to be faithfully almost flat over A if the following conditions are satisfied.
For all M ∈ A−Mod:

• as an A-module, Tor1
A(M,A) is p-almost zero;

• if M ⊗A0
A ≈p 0, then M = 0.

Remark 5.2.3. The first condition is a weakened version of flatness, hence the term almost flat.
On the other hand, the second condition is a priori stronger that faithfulness - it can be proven
that it is not (see [Bha14, Lemma 2.1]), but it won’t be needed in this thesis.

Remark 5.2.4. Faithful almost flatness is well defined in the following sense: if A0 → A is
faithfully almost flat and A → A′ is an almost faithfully flat, then A0 → A′ is also faithfully
almost flat.

Proposition 5.2.5 ([Bha18, Proposition 5.2]). There is an extension A0 → A∞,0 such that

(A∞,0[ 1
p ], A∞,0) is a perfectoid affinoid ̂

Qp(p
1
p∞ )-algebra, and that A∞,0 is faithfully almost flat

over A0. Furthermore, A∞,0 is also flat over A0.

Proof. Since we are in the hypotheses of Proposition 1.1.8, Cohen’s structure theorem tells us
that A0 is isomorphic to the ring of power series W [[x1, · · · , xd−1]], where d := dim(A0) and
W is the ring of Witt vectors associated to the residue field of A0 (therefore W is a complete
discrete valuation domain, with maximal ideal generated by p).

Define An := W [[p
1
pn , x

1
pn

1 , · · · , x
1
pn

d−1]], and call A∞,0 the p-adic completion of their filtered
colimit. For all m the natural inclusion A0/p ↪→ Am/p is free, therefore faithfully flat; by
Corollary 5.1.4, the map A0 → A∞,0 is faithfully flat.

Let’s take an A0-module M such that M ⊗A∞,0 ≈ 0, and prove that M = 0. We can assume
M to be generated by one element, i.e. M = A0/I for some ideal I ⊆ A0.

Faithful flatness tells us that I∞,0 := I ⊗ A∞,0 is an ideal of A∞,0. We have the almost
isomorphisms 0 ≈ M ⊗ A∞,0 ∼= A∞,0/I∞,0, so for every k we have p

1

pk ∈ I∞,0, or alternatively
p ∈ (I∞,0)p

k

.

50



The inclusion Ip
k ⊆ A0 induces an injective map ik : Ip

k ⊗ A∞,0 → A∞,0, whose image
is contained in (I∞,0)p

k

. Using the natural surjection
⊗pk

1 I � Ip
k

, we get this commutative
diagram:

(I ⊗A0 · · · ⊗A0 I)⊗A0 A∞,0 Ip
k ⊗A0 A∞,0 0

I∞,0 ⊗A∞,0 · · · ⊗A∞,0 I∞,0 (I∞,0)p
k

0,

∼= ik

so ik is surjective, and therefore bijective. With a similar line of reasoning, one gets that the
ideal (I∞,0)p

k ∼= (I∞,0)p
k

+ (p)A∞,0 ⊆ A∞,0 is almost isomorphic to (Ip
k

+ (p)A0)⊗A0 A∞,0 via
the natural map. Since A0 → A∞,0 is faithfully flat, we get that Ip

k

+ (p)A0
= Ip

k

, therefore
p ∈ Ipk for all k. By hypothesis, p 6∈ m2, so the only possibility is that I = A0, i.e. M = 0.

Finally, to show that (A∞,0[ 1
p ], A∞,0) is an integral perfectoid affinoid ̂

Qp(p
1
p∞ )-algebra, it

suffices to check the following.

• The ring A∞,0[ 1
p ] is a ̂

Qp(p
1
p∞ )-algebra, p-adically complete by definition.

• We have an equality A∞,0 = A∞,0[ 1
p ]◦ (essentially by definition) and the Frobenius endo-

morphism Φ on A∞,0/p is surjective because A∞,0/p =
⋃
mAm/p, and Φ(Am+1/p) = Am/p

for all m.

• The ring A∞,0 is integral. If ab = 0 in A∞,0, modulo p2n ā, b̄ ∈ Am/p2n for some m, so
they have representatives ã, b̃ ∈ Am. Since p

1
pmAm is a prime ideal and ãb̃ ∈ (p

1
pm )2npm ,

one of them must be contained in (p
1
pm )np

m

= (pn); in particular, either ā or b̄ is divisible
by pn. Repeating the argument for all n we get that either a or b is in (pn) for all n, i.e.
it is zero.

• The ring A∞,0 is normal. Take a monic polynomial f(x) ∈ A∞,0[x] and suppose it has a
root b

a in the fraction field. For all n, we can approximate any x ∈ A∞,0 with an element
xn ∈ lim−→m

Am such that they are equal modulo pn. If we call f̃n a monic polynomial
whose coefficients approximate those of f in the same fashion, cn := f̃n( bnan ) ∈ lim−→m

Am is
zero modulo pn: we now define fn := f̃n − cn, as another monic approximation of f , such
that fn(anbn ) = 0. The coefficients of fn, an, and bn are all contained in Am for some big
enough m; but Am is a power series ring over a discrete valuation domain, so it is a unique
factorization domain, and in particular normal: an

bn
∈ Am ⊆ lim−→m

Am. By varying n, we

get an approximating sequence
{
an
bn

}
n
of ab : since all the elements in the sequence are in

lim−→m
Am, their limit is contained in A∞,0.

We follow with another result which allows us to enrich the extension A∞,0 with a set system
of p-power roots.

Theorem 5.2.6 (André). Let (A∞,0[ 1
p ], A∞,0) be the perfectoid affinoid ̂

Qp(p
1
p∞ )-algebra defined

above, and g ∈ A0 coprime with p. It admits an integral perfectoid extension A∞,0 → A∞ with
a system of p-power roots of g, such that A0 → A∞ is faithfully almost flat.
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Let’s first discuss the geometric idea behind this proof. We can take A∞,0〈T
1
p∞ 〉 (i.e. the ring

obtained adjoining a p-power system of roots of T to A∞,0 and taking the p-adic completion),

and work with the pair (A∞,0〈T
1
p∞ 〉[ 1

p ], A∞,0〈T
1
p∞ 〉): it is a perfectoid affinoid ̂

Qp(p
1
p∞ )-algebra,

and we call Y its associated space. Intuitively, we want to impose T = g, which geometrically
would correspond to considering the following subset:

{y ∈ Y ||(T − g)(y)| = 0} ⊂ Y.

To do this, we write this subset as intersection of the open sets

Un := U

(
T − g, pn

pn

)
= {y ∈ Y ||(T − g)(y)| ≤ |(pn)(y)| = |p|n},

and we take the colimit of O+
Y (Un): its p-adic completion will be the ring A∞ (we will omit the

proof that A∞ is almost isomorphic to an integral perfectoid ̂
Qp(p

1
p∞ )-algebra, but this result

can be found in [Sch13, Chapter II.2]). As pn divides T −g in O+
Y (Un), in A∞ the image of T −g

is divisible by every power of p, therefore it is zero because of completeness.
To explicitly describe the ringO+

Y (Un), we resort to the approximation lemma: by Proposition
3.2.7 we can find fn ∈ A∞,0〈T

1
p∞ 〉[ such that the rational subsets U(T−g,p

n

pn ) and U(
f#
n ,p

n

pn ) are

the same, and f#
n ≡ T −g mod p

1
p . Crucially, f#

n has a system of p-power roots, and by Lemma
3.2.9 we could describe the ring at the almost level as:

O+
Y (Un) ≈ A∞,0

〈
T

1
p∞
〉〈(f#

n

pn

) 1
p∞
〉
,

which is the p-adic completion of lim−→k
Cn,k, where:

Cn,k := A∞,0

〈
T

1
p∞
〉[

u
1
p∞
n

]/(
(unp

n)
1

pk − f#
n

1

pk

)
.

In the following proof, we will be able to bypass much of the perfectoid theory that we took
for granted in this prelude, only using the existence of f#

n as described above, as we will simply
show that the completion of the colimit of the rings Cn,k, which admits a system of p-power
roots for g, is a faithfully flat extension of A∞,0.

Proof. If we work modulo p, we need not worry about completions, and we can describe A∞/p
at the almost level as lim−→n,k

Cn,k/p, where the maps lim−→k
Cn,k → lim−→k

Cn+1,k exist because one

can check that if p
n+1

pk |f#
n+1

1

pk then p
n

pk |f#
n

1

pk : this follows from the approximation condition on
f#
n and f#

n+1.
Let’s prove first that A∞,0 → Cn,k is faithfully flat modulo pεk , with εk = 1

pk+1 :

Cn,k/p
εk = A∞,0

〈
T

1
p∞
〉[

u
1
p∞
n

]/(
pεk , f#

n

pεk
)
.

The k-fold Frobenius identifies Cn,k/pεk , as an A∞,0/pεk -algebra, with the A∞,0/p
1
p -algebra:

A∞,0

〈
T

1
p∞
〉[

u
1
p∞
n

]/(
p

1
p , f#

n

)
∼= A∞,0

〈
T

1
p∞
〉[

u
1
p∞
n

]/(
p

1
p , T − g

)
,
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where we used that f#
n ≡ T − g mod p

1
p . This algebra is free over A∞,0/p

1
p , and in particular

faithfully flat. Furthermore, since no power of p divides f#
n , Cn,k has no p-torsion.

Recall that Am → A∞,0 is faithfully flat, where Am is defined as in 5.2.5. The following maps
are faithfully flat for all n, k:

• the maps Am/pεk → A∞,0/p
εk , being the quotient of Am → A∞,0;

• the maps Am/pεk → Cn,k/p
εk , by composition with A∞,0/pεk → Cn,k/p

εk ;

• the maps Am → Ĉn,k, by Lemma 5.1.3, since Ak is noetherian, pεk -adically complete and
with no pεk -torsion, while Ĉn,k is pεk -adically complete by definition and has no p-torsion
because Cn,k has no pεk -torsion (as seen in the proof of Corollary 5.1.4);

• the maps A0 → Ĉn,k, by precomposition with A0 → Ak;

• the maps A0/p→ Cn,k/p, obtained by the previous one modulo p;

• the map A0 → A∞, by Corollary 5.1.4.

Let’s remark that if we work with A∞ only up to almost isomorphism (since it is only almost

isomorphic to an integral perfectoid ̂
Qp(p

1
p∞ )-algebra), the map A0 → A∞ has to be considered

just almost faithfully flat.

Remark 5.2.7. Via Lemma 5.1.2, it’s also possible to prove that A∞,0 → A∞ is almost faithfully
flat.

Let’s include an easy lemma:

Lemma 5.2.8. Let A0 be a local noetherian ring of characteristic (0, p) with no p-torsion. Then
for all finitely generated A0-modules M the natural map

Ext1
A0

(M,A0)→ lim←−
k

Ext1
A0

(M,A0/p
k)

is injective.

Proof. Since A0 is noetherian,M is finitely presented. It is thus possible to find a free resolution:

· · · → An0 → Am0 →M → 0,

with m,n finite. As a consequence, Ext1
A0

(M,A0) is finitely generated, since it is the quotient
of a submodule of HomA0

(An0 , A0) ∼= An0 . Since A0 has no p-torsion, we get the following short
exact sequence:

0 A0 A0 A0/p
k 0.

·pk

Applying the functor HomA0(M,−), we obtain the following long exact sequence:

· · · Ext1
A0

(M,A0) Ext1
A0

(M,A0) Ext1
A0

(M,A0/p
k) · · ·.·pk fm

In particular, ker(fm) = pk Ext1
A0

(M,A0), therefore the limit of the maps {fm}m has kernel
K :=

⋂
pk Ext1

A0
(M,A0). Since K = pK, by Nakayama’s lemma we get that K = 0.
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5.3 Proof

Now we are ready to face the main theorem:

Theorem 5.3.1 (André). Let A0 be a local and complete regular ring of characteristic (0, p), and
i : A0 ↪→ B0 a module-finite extension of rings. The inclusion i splits as a map of A0-modules.

First, let’s give an idea of the proof. By Proposition 2.4.10 there is some g ∈ A0 such that
A0[ 1

g ] ↪→ B0[ 1
g ] is finite étale. Since étaleness is preserved by base change, A∞[ 1

g ]→ B0⊗A0A∞[ 1
g ]

is still étale. We want to push all the ramification of the extension A∞ → B0 ⊗A0
A∞ in p by

adjoining elements to A∞ such that g divides p in this new ring: in this way the hypothesis of
Faltings’almost purity theorem will be satisfied. On one hand, perfectoid theory allows us to
find such an extension; on the other hand, this extension won’t be almost faithfully flat: this
means that we will not be able to deduce from the almost-splitting of the tensored sequence the
almost-splitting of the starting sequence. This problem will be solved by the Hebbarkeitssatz
theorem, which allows us to reduce modulo pm at the cost of shifting from p-almost mathematics
to pg-almost mathematics.

Proof. By Proposition 2.4.10, there is an element g′ ∈ A0 such that A0[g′−1] → B0[g′−1] is an
étale covering. Since A0 is a regular local ring, it is a unique factorization domain, therefore
there is some k such that g′ = pkg for some g coprime with p (this condition of coprimality will
be necessary later to apply Proposition 4.3.1)

As already seen in the first chapter, the sequence 0→ A0 → B0 → Q0 → 0 splits if and only
if α0 ∈ Ext1

A0
(Q0, A0) is 0. Since B0 is finitely generated as an A0-module, so is Q0; we can

apply Lemma 5.2.8 to get the following immersion:

Ext1(Q0, A0) ↪→ lim←−
m

Ext1(Q0, A0/p
m).

We can write α0 as the limit of {α0/p
m}m, where α0/p

m is the image of α0 via the map
Ext1(Q0, A0) → Ext1(Q0, A0/p

m) induced by the projection. In particular, we just need to
show that α0/p

m = 0 for a large enough m. Let’s call α∞ and α∞/pm the images respectively
of α0 and α0/p

m via the following commutative diagram:

Ext1
A0

(Q0, A0) Ext1
A0

(Q0, A∞) Ext1
A∞(Q0 ⊗A∞, A∞)

Ext1
A0

(Q0, A0/p
m) Ext1

A0
(Q0, A∞/p

m) Ext1
A∞(Q0 ⊗A∞, A∞/pm),

≈p

≈p

where the rightmost maps are p-almost isomorphisms because A∞ is p-almost isomorphic to
a flat A0-module.

Suppose that α0/p
m 6= 0, which is equivalent to saying that I := AnnA0(α0/p

m) ( A0. Since
A0 is noetherian and I is a proper ideal,

⋂
n I

n = 0 so, for a large enough k, pg /∈ Ip
k

, or

equivalently Ip
k

+(pg)A0

Ipk
6= 0. Let I∞ := AnnA∞(α∞/p

m). Since A0 → A∞ is faithfully almost
flat (as in Definition 5.2.2), we have:

I ⊗A∞ A∞ 〈α0/p
m〉A0

⊗A∞ 0

0 I∞ A∞ 〈α∞/pm〉A∞ 0,

i

π
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where i is p-almost injective, which means that π is not only surjective, but also p-almost injective
- in particular, it is a p-almost isomorphism: I ⊗A∞ ≈p I∞. In a similar fashion, we can obtain
that (pg)A0

⊗A0
A∞ ≈p (pg)A∞ .

Using the natural surjection
⊗pk

1 I � Ip
k

, we get this commutative diagram:

(I ⊗A0
· · · ⊗A0

I)⊗A0
A∞ Ip

k ⊗A0
A∞ 0

I∞ ⊗A∞ · · · ⊗A∞ I∞ (I∞)p
k

0,

≈p π
pk

so πpk is itself an almost isomorphism (for the sake of accuracy, it is surjective and almost
injective). With a similar line of reasoning, one gets that the ideal (I∞)p

k

+ (pg)A∞ ⊆ A∞ is
almost isomorphic to (Ip

k

+ (pg)A0
)⊗A0

A∞ via the natural map. Since A0 → A∞ is faithfully

almost flat, and Ip
k

+(pg)A0

Ipk
6= 0, we get:

0 6≈p
Ip
k

+ (pg)A0

Ipk
⊗A0

A∞ ≈p
(Ip

k

+ (pg)A0
)⊗A0

A∞

Ipk ⊗A0
A∞

≈p
(I∞)p

k

+ (pg)A∞
(I∞)pk

.

In particular, the last module is not 0, which means that pg /∈ (I∞)p
k

. Since A∞ has a system
of p-power roots for both p and g, it means that (pg)

1

pk /∈ I∞ = AnnA∞(α∞/p
m). Recapping,

we have proven that if α/pm 6= 0, then α∞/p
m is not killed by all the p-power roots of pg:

to conclude the theorem we must come to a contradiction by showing that indeed α∞/p
m is

pg-almost zero.

Let A(n)
∞ := A∞〈p

n

g 〉, B
(n)
∞ := B0 ⊗A0 A

(n)
∞ , and call their cokernel Q(n)

∞ . Similarly, in the
extension A∞ → B0 ⊗A0

A∞, call the second ring B∞ and the cokernel of the extension Q∞.

The natural map A(n)
∞ → B

(n)
∞ becomes an étale extension after inverting p: since g divides pn

in A(n)
∞ , inverting p also inverts g and thus kills all algebraic obstructions to étaleness (including

injectivity, by virtue of faithful flatness).

The inclusion A(n)
∞ [ 1

p ] ↪→ B
(n)
∞ [ 1

p ] is a finite étale covering, and the first ring is a perfectoid
̂

Zp[p
1
p∞ ]-algebra, so by Theorem 3.1.21 A(n)

∞ → B
(n)
∞ is a finite étale covering in the category

̂
Zp[p

1
p∞ ]

a

− perf . Consider the p-almost exact sequence:

0 A∞ B∞ Q∞ 0.

If we tensor by A(n)
∞ over A∞ we get the p-almost exact sequence:

A
(n)
∞ B

(n)
∞ Q

(n)
∞ 0,

where, being a p-almost étale covering, the leftmost map is also p-almost injective. Applying the
functor HomA∞(−, A(n)

∞ ) to the first sequence and the functor Hom
A

(n)
∞

(−, A(n)
∞ ) to the second
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sequence, we can consider the following commutative diagram:

HomA∞(B∞, A
(n)
∞ ) HomA∞(A∞, A

(n)
∞ ) Ext1

A∞(Q∞, A
(n)
∞ ) · · ·

Hom
A

(n)
∞

(B
(n)
∞ , A

(n)
∞ ) Hom

A
(n)
∞

(A
(n)
∞ , A

(n)
∞ ) Ext1

A
(n)
∞

(Q
(n)
∞ , A

(n)
∞ ) 0,

∼= j

where the horizontal maps are p-almost exact, and the vertical maps are induced by the natural
map A∞ → A

(n)
∞ . For the p-almost surjectivity of the rightmost map on the bottom, we used that

Ext1

A
(n)
∞

(B
(n)
∞ , A

(n)
∞ ) ≈p 0 because B(n)

∞ is p-almost projective as an A
(n)
∞ -module; This induces

the p-almost injective map j. Let α(n)
∞ ∈ Ext1

A
(n)
∞

(Q
(n)
∞ , A

(n)
∞ ) be the element which represents

the extension A(n)
∞ → B

(n)
∞ , in the same way as α0 represents the extension A0 → B0: via the

p-almost injective map j, we can identify it with an element of Ext1
A∞(Q∞, A

(n)
∞ ), which maps

to α(n)
∞ /pm ∈ Ext1

A∞(Q∞, A
(n)
∞ /pm) via the obvious map. Since A(n)

∞ → B
(n)
∞ is a p-almost étale

covering, Q(n)
∞ is p-almost projective as an A(n)

∞ -module, which means that α(n)
∞ is p-almost zero,

so α(n)
∞ /pm is p-almost zero for every m.
For every m we have the following canonical maps. First:

Ext1
A∞(Q∞, A∞/p

m)→ Ext1
A∞(Q∞, A

(n)
∞ /pm),

which sends α∞/pm to α(n)
∞ /pm ≈p 0; passing to the limit we get the other map:

f : Ext1
A∞(Q∞, A∞/p

m)→ lim←−
n

Ext1
A∞(Q∞, A

(n)
∞ /pm),

which sends α∞/pm to a p-almost zero element.
By Proposition 4.3.1, the pro-morphism from {A∞/pm}n to {A(n)

∞ /pm}n has kernel and coker-
nel uniformly pg-almost-pro-zero, so by Proposition 4.3.5 the map f is a pg-almost isomorphism:
in particular, α∞/pm ≈pg 0, which concludes the proof.
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